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In the first year, we investigated two independent ap-
proaches for designing the VLR vocoder. The first approach
was the phonetic vocoder in which the sequence of phonemes
in the input speech must be automatically recognized. The
phonetic vocoder uses a supervised training approach and
requires a database of phonetically transcribed and hand
labelled speech. The second approach uses vector quantization
and Markov chain modeling to reduce the bit rate of an LPC
vocoder from 2400 b/s to the range of 100-200 b/s. This
latter approach is unsupervised and does not require any
human effort in the training phase. The work on the above
two approaches led to the formulation of the final system:
the segment vocoder.

In the second year, the segment vocoder was implemented
and tested. The segment vocoder models speech as a sequence
of segments. A segment consists of a sequence of frames and
has a duration comparable to the duration of a diphone. 1In
the segment vocoder, a segment is determined automatically by
a segmentation algorithm and does not require the labor
intensive process of hand labelling. The work on vector
quantization and Markov modeling determined that both the
log-area-ratio (LAR) parameters representing a single frame
of speech and the LARs of consecutive frames are statistically
dependent. This statistical dependence has been exploited by
quantizing a segment as a single unit in the segment vocoder.

The segment vocoder, operating in a single speaker mode,
was demonstrated during the final ARPA NSC meeting in June,
1982. The vocoder used an average bit rate of 150 b/s
to transmit the speech of a single speaker. The vocoded
sentences were highly intelligible. The quality of the vocoded
speech was quite close to the gquality of an LPC synthesizer
using unquantized parameters and therefore quite natural
sounding.

During the first year, we also investigated the use of
several techniques for multispeaker synthesis. The goal was
to use a set of templates (segment templates or diphone
templates) that were derived from one speaker to synthesize
speech that sounded more like a new vocoder user. In this
report we describe the above algorithms and present our
results on the VLR vocoder.
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1. OQVERVIEW

The primary goal of this two-year project was to demonstrate
a very-low-rate (VLR) vocoder that transmits speech at a rate of
100 to 200 b/s. At these bit rates, the vocoded speech is
required to be intelligible in context, i.e., the vocoder can be
used in a conversation. The quality of the vocoded speech was to

be as natural sounding as possible.

In the first year, we investigated two independent
approaches for designing the VLR vocoder. The first approagh was
the phonetic vocoder in which the sequence of phonemes in the
input speech must be automatically recognized. The vphonetic
vocoder uses a supervised training approach and requires a
database of phonetically transcribed and hand labelled speech.
The' second approach uses vector quantization and Markov chain
modeling to reduce the bit rate of an LPC vocoder from 2400 b/s
to the range of 100-200 b/s. This latter approach is
unsupervised and does not require any human effort in the
training phase. The work on the above two approaches led to the

formulation of the final system: the segment vocoder.

In the second year, the segment vocoder was implemented and
tested. The segment vocoder models speech as a sequence of

segments. A segment consists of a sequence of frames and has a

el allal v la . alal
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duration comparable to the duration of a diphone. 1In the segment
vocoder, a segment is determined automatically by a segmentation
algorithm and does not require the labor intensive process of
hand 1labelling. The work on vector quantization and Markov
modeling determined that both the log-area-ratio (LAR) parameters
representing a single frame of speech and the LARs of consecutive
frames are statistically dependent; This statistical depéndence
has been exploited by quantizing a segment as a single unit in

the segment vocoder. We call this process segment quantization.

The segment vocoder, operating in a single speaker mode, was
demonstrated during the final ARPA NSC meeting in June, 1982,
The vocoder used an average bit rate of 150 b/s to transmit the
speech of a single speaker. The vocoded sentences were highly
intelligible. The quality of the vocoded speech was quite closge
to the quality of an LPC synthesizer using unquantized parameters

and therefore quite natural sounding.

During the first vyear, we also investigated the use of
several techniques for multispeaker synthesis. The goal>was to
use a set of templates (segment templates or diphone templates)
that were derived from one speaker to synthesize speech that
sounded more like a new vocoder user. By using an average vocal
tract length normalization and a long term average spectrum

normalization, the spectral parameters of the templates can be
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modified to sound more like the new speaker. For those speakers
whose speech was significantly different from the database
talker, the resulting output speech sounded much more like the

new intended speaker.

The final report is organized into five major Sections. 1In
each Section we describe the work that was done on one major

topic. These five topics are:

- Phonetic vocoder

- Vector quantization ‘
- Markov chain models for speech
- Segment vocoder

- Multiple speaker synthesis

We summarize below the major issues and results of each Section.
We have included in Appendix I of this report three conferencé
papers that describe several aspects and results of the work
performed under this project. The first two papers were
presented at the Interngtionﬁl Conference on Acoustics, Speech
and Signal Processing in Paris, 1982. The third paper was

presented in Globecom-82, in Miami, 1982,

1.1 Phonetic vocoder

During the first year of the project, we performed several

experiments with the phonetic vocoder approach to very-low-rate
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vocoding. This approach uses an automatic speech recognition
technique to transmit speech at 100 b/s. The speech recognizer
uses a diphone network model of spee:h for the recognition
process. A diphone is defined as the region from the middle of a
phoneme to the middle of the following phoneme. Thus, we expect
the diphone model to represent most of the coarticulatory effects
of one phoneme on adjacent phonemes. Since not all diphones can
follow a given diphone (two successive diphones must have a
common phoneme), we use a diphone network fo specify these

sequential constraints.

The recognition process is a matching process. An input
sentence is matched to the nearest path (using a spectral
distance measure) in the diphone network. The sequence of
diphones in the nearest path to the input is considered as the
input diphone sequence. In the diphone network, we typically
have several templates for each diphone. At the receiver, only
one template per diphone is used in synthesis. Therefore the
spectral error between the input and the synthesized output is
quite large. But if the recognition process is highly accurate,
the synthesized speech would be intelligible since the correct
phoneme sequence in the input is reproduced in the synthesized
output. We determined that a phoneme recognition rate of 80% is

necessary to achieve the proper ‘performance 1level in the
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matching process. Due to computational limitations a beam search
is used to determine the best matching path. A stack length of
600 simultaneous theories was found to be adequate., Increasing
the stack length to 3000 did not improve the recognition rate

significantly.

The major issues of the phonetic vocoder ﬁave been the
amount of training data necessary to estimate the diphone model
and how the training data is used. Obtaining a training data set
requires a large human effort since we must segment and label
continudus speech. A total of 5 minutes of speech was labelled.
An initial estimate of the diphone network was based on one
diphone template for each of 2800 diphones where each template is
‘extracted from a carefully recorded nonsense syllable that
contains the required diphone. This network is also used for
synthesis. The phoneme recognition rate was 36% when the diphone
network based on the nonsense syllables is used. By adding
additional diphone templates extracted from continuous speech the
performance improved to 62% when a total of 4200 templates were
used. A significantly larger amount of training data is expected
to improve the recognition performance. But, the human effort
Eequired to hand label the required database is prohibitively
expensive. We therefore investigated an alternative approach to

the phonetic vocoder that avoids the transcription and hand
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labelling of speech. The work on the segment vocoder will be
described in Section 5. 1In our work on the phonetic vocoder, we
have evaluated several methods for using the additional diphone

templates. These will be discussed in Section 2.

We also deécribe in Section 2, some variations on the
phonetic vocoder that improved the intelligibility of the
vocoder, with a moderate increase in the bit rate. In the
phonetic vocoder, the synthesized diphone can have a rather
different spectrum from the input diphone. The diphone template
used for synthesis is not necessarily the nearest template to the
input. To improve the spectral match between the input and the
synthesized output, we specified which template was nearest to
the input. This allophone vocoder requires an additional 30 b/s
and has a slightly higher intelligibility than the phonetic
voéoder. In order to improve the spectral match further, we did
not use the network constraints, i.e., any diphone was allowed to
follow a given diphone. This dibhone vocoder has a bit rate
around 200 b/s and is quite intelligible.. The segment vocoder,
described in Section 5, is an extension of the diphone vocoder

that does not require any hand labelling of speech.

1.2 Vector Quantization
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We describe in Section 3 several methods for quantizing the
LAR parameters used to represent a single frame of speech. We
compared several clustering algorithms for designing a vector
quantizer. We found that a non-uniform binary clustering
algorithm achieved a good performance with a large savings in the
computational load as compared to the optimal K-means algorithm.
We also used a model of optimal scalar quantization to evaluate
the gain due to statistical dependence in vector quantization.
In particular, we found that coding 14 LAR parameters of a single
frame of speech required 10 bits for a vecﬁor quantizer instead
of 15 bits for an optimal scalar quantizer for the same
quantization error. Since the vector quantizer has a 30% lower
bit rate than the optimal scalar quantizer, the former
quantization scheme was used with a variable frame rate (VFR)
algorithm ﬁo transmit the spectrum alone at 180 b/s (6 bfts x 30
frames/s). This system yields intelligible speech for a single
speaker and was us2d for the Markov chain modelling of speech.
The work on vector quantization is described in detail in Section

4.

1.3 Markov Chain Models of Speech

To reduce the bit rate of an LPC wvocoder that uses a 6 bit

vector quantizer for the spectrum and a VFR algorithm with an
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average frame rate of 30 frames/s, we used a Markov chain model
of the sequence of quantized spectra. Since we expect that
consecutive speech spectra to be statistically dependent, the
Markov chain model, which uses the past to predict the future,
can be used to reduce the bit rate required for coding the
spectrum. A first-order chain reduced the entrooy from 6 bits to
4.75 bits/transmission. Since this bit rate was still too high
for the VLR vocoder, we needed to est%mate a higher order Markov
chain. To minimize the amount of data required to estimate high
order models, we proposed two new Markov models. The variable
resolution model was most effective and had an entropy of 4
bits/transmission when 256 states were used in the model. ' This

work is described in Section 4.

1.4 Segment Vocoder

Vector quantization is an attractive method for quantizing a

set of parameters when these parameters are statistically

» - "
D SPRPSE NSTRNE |

dependent (beyond correlation). We show in Section 3 that the

LARs of a single frame of speech are statistically dependent.

Also, the variable resolution Markov model, described in Section
4, demonstrated that consecutive spectra of speech are highly

dependent. To exploit the above statistical dependencies, we use

a vector quantizer for quantizing all parameters that represent
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several consecutive frames of speech. These consecutive frames
define a ségment and the corresponding quantizer is called a
segment quantizer. The segment vocoder which is described in
Section 5, uses segment quantization to vocode speech at an
average bit rate of 15% b/s. Our work in the phonetic vocoder
and its variations guided our choice in defining a segment. We
required the segment to have an average duration comparable to a
phoneme's duration. We used a segmentation algorithm similar to

phonetic segmentation algorithms. One of the most successful

segmentation algorithms that we used, generated segments that are

analogous to diphones. The corresponding segments were defined
from the middle of a spectral steady state to the middle of the

following steady state.

As we demonstrate in Section 5, the gain track and voicing
pattern of a segment are highly dependent on the spectral
sequence of the segment. If two segments are spectrally close
then they generally have the same gain track and voicing pattern.
Hence, ‘these are not transmitted in the segment vocoder, the gain
track and voicing pattern of the template is used at the
receiver. Only a level adjustment of the gain track is

transmitted for each segment.

We describe in Section 5, the segment vocoder and the
techniques used for segmentation, segment gquantization, and gain

and pitch quantization.
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1.5 Multispeaker Synthesis

In both the phonetic vocoder and the segment vocoder, the
output speech sounds like the speaker used to generate the
templates. To make the output speech sound more like a new
vocoder user, we investigated several methods for transforming
the template data base. The transformation was to be determined

using a small amount of training data from the new speaker.

The basic procedure was applied on the phonetic synthesis
part of the phonetic vocoder. We required the speaker to speak
for a period from 20 to 60 seconds. The spéech from the new
ipeaker was analyzed to extract several parameters which were
used to transform the diphone templates to make the phonetic
synthesizer sound more like the new speaker. The parameters used
for the transfo;mation are the average vocal tract length of the
new speaker and the 1long term 'averaqe spectrum for voiced,
unvoiced and silence portions of the new speaker's speech. The
use of these parameters is described in Section 6. We have found

the speaker transformation to be effective particularly when the

new speaker sounded quite differently from the database talker.
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2. PHONETIC VOCODER

During the first year of this contract, we performed several
experiments. with the phonetic vocoder approach to very-low-rate
vocoding. In this Section we will first review briefly the basic
operation of the phonetic vocoder. Then, we will describe those
experiments performed in an effort to make the phonetic
recognition performance high enough such that the resynthesized

speech was intelligible.

2.1 Methods Used

Figure 2.1 shows a block diagram of the phonetic vocodef.
This figure shows that the input speech is analyzed to produce a 'iﬁ
set of phonemes, phoneme durations, and pitch values. A phonéme ?f:
and its associated value of duration and pitch is called a fiﬁ

"triplet". Speech rates are typically about 12 phonemes per

second, and since each triplet can be encoded into 8 bits, the ®
v v
data rate in the transmission channel is about 100 bits per }:J
second. Once the triplets are decoded at the receiving end, a §§£
phonetic synthesizer reconstructs the original speech. o
The basic model of speech that we chose to use in the o
phonetic vocoder is the diphone model. A diphone is defined as o
"!

11
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the region from the middle of one phoneme to the middle of the
next phoneme. Thus, the diphone model directly represents much
of the coarticulatory effect of one phoneme onl the adjacent
phonemes. Both the analysis and synthesis components of the

phonetic vocoder require a large database of diphone templates.

The phonetic synthesis program translates a sequence of
phonemes into the corresponding diphone sequence, and then
constructs LPC parameterr tracks by concatenating the diphone
templates for those diphones. The program also uses appropriéte
time-warping, and smoothing algorithms that are designed to

maximize the naturalness of the output speech.

" The phonetic recognizer uses the same diphone model to
recognize the sequence of phonemes. The diphone templates are
cdmpiled into a network that constrains the sequence of diphones.
That is, diphone A-B can only be followed by a diphone that
starts with phoneme B. The diphone network consists of nodes and
directed arcs. An example of a simple network is shown in Figure
2.2. There are two typeé of nodes: phone nodes and spectrum
nodes. The phone nodes (shown as labelled circles) correspond to
the midpoints of the_phones; there is one such node for each
phone. These phone nodes are connected by diphone templates.
Each diphone template is represented in the network as a sequence

of spectrum nodes (shown as dots). When two or more consecutive

13
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spectra in the original diphone template are very similar, they
are represented by a single spectrum node in the network. The
open dots indicate lthe first spectrum node in the original
diphone template that is at or past the labelled phone boundary.
Note that, in Fig. 2.2, the diphone template Pl-P2 is distinct .
from the template P2-Pl. Also note the possibility of diphones :
of the type Pl-Pl. The network alléws for multiple templates

going from one phone to another (e.g., P2-Pl), Branching and N }
merging of paths within a template is also allowed (e.g., P1-P3). -

The network also allows the specification of diphones in context.

Y W VEERTENNY)

The phone node P4/&P3 represents the phone P4 followed only by
P3. Thus the template P2-P4/&P3 1is different from the

unconditioned template P2-P4. Finally, the network allows for -
)

(57 gy

= ‘ sequences of diphones, for example in clusters, to be treated as

hadda

an independent unit altogether (P1-P5*-P3), The>generation and

training of the network is discussed below.

Each spectrum node in a diphone template consists of a model
for both the spectrum and the duration. The spectral model is
represented by means and standard deviations for all 14 log-area-

ratio (LAR) coefficients and gain. The duration of a node is

defined as the number of frames of input aligned with the node.

Each node contains a smoothed probability density of the duration

of the node based on actual alignments during training. Each

]
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Fig. 2. Example of diphone template network for five phonemes.
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spectrum node has an implied self-loop, so that the diphone
matcher (which will be discussed below) can align several input -

frames to one spectral node.

The network matcher uses a stack-based dynamic programming

N TS CHT R -— N

algorithm which attempts to find the sequence of templates in the -
network that best matches the 1i.put according to a scoring
algorithm. This score includes components due to the spectrum

(LAR's), the durations, and also the probability of the

Py B

associated phoneme sequence. In our feasibility study for this
project, we found that by inclusion of first order phoneme

statistics (probability of phoneme pairs or diphones) into the -y

, .
YN WA PV

recognition process, phoneme identification accuracy improved by
15s%. The main effect of the inclusion of phoneme pair "
probabilities in this program was that it greatly reduced the 4 T

number of extraneous phonemes inserted into the output, but did

<

not substantially change the probability of the correct phoneme

£

v .
P

appearing in the output.

The basic operation of the program begins by updating each

"theory" by the addition of the newest input frame. A theory

consists of a detailed account of how a sequence of input frames -

S T O]

is aligned with the network, along with a total score for that
correspondence. Each o0ld theory will generate several new

theories. First, a theory in which the new input frame is

16 'R
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matched against the same network node as the previous input
'E frame. Second, a theory for each possible following node in the
network. And third, for each pair of two following nodes. After
;ll o0ld theories have been expanded into new ones, the program
keeps all theories that are within a score threshold of the best
v' theory ("beam search"), and also limits the number of theories to

a maximum number ("bounded breadth search"). All theories are
~ kept in a tree, such that it is possible to determine, at any
B time, whether all theories have a common beginning. When they

do, that part of the theories that agree can be output. Thus,

there is a short lag (an average of 30 frames) between the input

and the output of the chosen answer. We have found that

preserving several hundred theories in the stack seems to result

i in an answer that has a score close to the score obtained with a

much- larger stack. Therefore, we conclude that the pruning is

not often eliminating theories that would eventually score better

than theories that are kept. ~ .

2.2 Training the Network

Much of the work on the phonetic vocoder was devoted to ;}A
developing different =lgorithms for training the network model
for speech, The first method of updating the network that we A

implemented relies on augmenting the network with additional
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diphone branches. 1In this procedure, we use the transcription of
the training data, together with the network compiler prograﬁ, to
create new alternate diphone templates. Each of the templates is
independent, except that all the templates for a single diphone

start and end at the same phoneme nodes.

The second method is more automated. The automatic training
capability of the matcher allows the researcher to input to the
matcher a sentence that bas been phonetically transcribed. The
input traﬁscription includes both phonetic labels and may include
the time of each phoneme. The phoneme may be left unspecified
where desired, and the times may be specified as ranges if the
best boundary location is not clear. The matcher then finds the
best alignment (and corresponding score) of the input utterance
against the network under the constraint of the transcription.
Once completed, the matcher uses the input utterance to "train"
the network. Those portions of the input utterance that are
similar (closer than a threshold) to the path in the network that
it was aligned with are used durihg the training procedure by
updating the statistics of that closest path in the network to
include the input utterance parameters. The statistics of the
network path that are modified‘ include the the means and
variances of the LARs and the PDFs of the frame durations. The

remaining portions of the input utterance, those that are not
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very similar to the aligned path in the network, are used to add
alternate branches to the network. The parameters of those
portions of the input utterance are used to create new branches
of the network. By this procedure of updating network statistics
and augmenting the network with new branches, we ensure that the
network can match any sééech from‘the training data within the
specified error threshold. However, the amount of training data
required such that the network will have sufficient paths and
accurate statistics to model arbitrary input utterances well may

be excessive.

There are three differences between the augmentation

algorithm and the automatic training method:

l. In the augment mode, the entire diphone is always added
as an alternate path. ‘

2. In augment mode, the compiler assumes that the diphone
boundary is at the middle of the labelled phone (which
is a good heuristic) rather than letting the program
assign the diphone boundary where it chooses.

3. In augment mode, there are no a priori probabilities
assigned to paths. This differs from the automatic
training mode where several paths may be "averaged"
together. These a priori probabilities, however, are
not currently used by the matcher.

To evaluate the above training methods, we "trained"™ the
network on several sentences using each training method, and then

tested the updated (trained) network using several other
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sentences. A comparison of the results using the training
algorithm and augmenting algorithm showed 8% better phoneme
recognition with the augmentation method. As a result of this
experiment, we chose to use our available training data with the

augment algorithm,

2.3 Recognition Improvement with Training

As mentioned above, it is necessary to train the network on
natural speech, so that it contains a model for any of the many
ways the different diphones can be pronounced. We recorded,
digitized, and carefully transcribed 255 sentences of varying
lengths. This produced about 4200 phonemes of training data. We
then divided the training speech into three sets of approxirately
1400 phonemes each. These were used incrementally to produce
three_diphone networks with different numbers of alternate paths.
Thus, there were four different diphone networks. The first
network had just one sample of each diphone taken from the
phonetic synthesis database of nonsense utterances. . lWe shall

call this network "untrained." For each of the other three

diphone networks, we determined the total number of diphones used
to train it, the number of unique diphones used to train it
(i.e., the number of diphones for which there was now at least

one additional template), and the percentage of correctly —

recognized phonemes.
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The test material consisted of 10 new sentences from the
Harvard phonetically balanced list. These sentences had not been
used in training. The total number of phonemes in the test

sentences was 234.

Figure 3 shows the recognition performance as a function of
the amount of training. Performance is given as a function of
each of the two parameters described above: the total number of
training diphones and the number of distinct training diphones.
As the figure shows, the recognition performance improves
considerably with additional | training, improving from a
recognition accuracy of 36% correct with no training (the
"untrained"” network) to 61% correct with 3000 total diphones of
training). However, as the last point indicates, further
training by the network augmentation method does not seem to make

any significant improvement.

Careful examination of the training data indicated that even
though only approximately 1200 of the 2800 possible diphones in
the network had been augmented by the training with one or more

alternate paths, over 90% of those diphones appearing in the test

sentences were of diphones that had been augmented by additional

paths. Thus, adding additional paths to diphones that were not
needed in the test would not help at all. We looked at the

subset of phonemes in the test for which two conditions were met:

21
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Fig. 3. The effect of training on phoneme recognition accuracy.
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(1) the matcher had correctly identified both adjacent phonemes,
and (2) the two diphones that span the phoneme had been trained.

That is, if the correct phoneme string in the test sentence were

ABC
we only considered phoneme B if both A and C were correctly
recognized, and the diphones A-B and B-C had been augmented by
training. 1In these cases, we found that 85% of the phonemes were
correctly recognized. This result indicates that the matcher
tends to get long strings of phonemes correct. When a phoneme is
incorrectly identified, it will usually be part of a string of
several contiguous, incorrectly identified phonemes. It also
suggests that if there were much more training, the performance
might improve considerably. Unfortunately, this may be an
inherent quality of a matcher such as ours that finds a globally

optimal scoring path.

2.4 Conclusion

The primary conclusion from this project is that this method
of VLR vocoding has the possibility of achieving very low data
rates, but will need very large amounts of manually transcribed

data before the phoneme recognition rate is high enough to make

the output speech intelligible. Another problem with the use of

the phonetic recognition and resynthesis for a vocoder was that
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if we had multiple templates in the recognition network, but only
one template for each diphone in the phonetic synthesis program,
the output speech was no longer guaranteed to be spectrally close
to the input speech. This realization prompted two experiments,
which eventually led to the design and implementation of - the

Segment Vocoder, which will be discussed in a later Section.

2.4.1 Allophone Vocoder

To increase the intelligibility of the phonetic vocoder we
considered transmitting extra information with each: phone,
specifying the identity of the actual diphone template that
matched best by specifying in each case. Assuming 12
phones/second, and 8 templates/diphone, this would require only
an additional 12x3=36 b/s. We call this vocoder an "Allophone
Vocoder." An allophone is one of many possible variations in the
way of pronouncing a phone.  Although the diphone template
network is identical to that used for the phonetic vocoder, the
allophone vocoder does not use the many-to-one mapping discussed
above, The vocodér synthesizes the spectral sequence -
consistent with the network const;aints - that is closest to the

input spectral sequence, according to the distance metric used.

We found the output speech from the allophone vocoder to be

substantially more intelligible than that from the phonetic
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vocoder. However, due to the constraints of the network, the
"nearest" spectral sequence chosen was often quite far from the

input sequence, resulting in some intelligibility problems.

To further improve the intelligibility of the vocoded speech
we needed to decrease the error between the inpui spectra and the
synthesized spectra. The network constrains the sequence of
diphones in such a way that taken together, the diphones form a
phone sequence. A diphone template ending with a particular
phone can be followed only by one of the diphone templates that

begins with that same phone.

2.4.2 Diphone Vocoder

mo decrease the spectral match error (still using the same
set of diphone templates) we relaxed the constraint on the
sequence of diphone templates that was imposed by the network.
Thus, any diphone template could be followed by any other diphone
template. This doubled the number of bits needed to transmit the
sequence of diphone templates, bringing the total transmission
rate up to about 200 b/s. (The source information still requires

approximately the same number of bits.)

The result was that the spectral error decreased by 20% and

the intelligibility improved to the point where most listeners
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understood practically all the words and felt that this diphone

vocoder could result in a usable speech transmission system.

Although the sequence of diphone templates transmitted by

the diphone vocoder does not necessarily correspond closely to

‘the "ideal" phonetic sequence, the spectra being synthesized are

close enough to the input spectra so that (as with a conventional
LPC vocoder) the human listener can make sense out of thé speech.
In other words, unless the required transmission rate is so low
that only recognition methods are practical (below 130 b/s), it
is more efficient, at this time, for the vocoder to simply do the
best possible job of synthesizing a spectral sequence that sounds
like the input sequence and leave the phone recognition to the

human listener.

The diphone vocoder still has one significant drawback: the
large amount of human effort fequired to transcribe a large data
base of diphone templates. 1In the following Section we discuss a
method that avoids this problem while maintaining all the

advantages of the diphone vocoder.
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3. VECTOR QUANTIZATION

!’ 3.1 Introduction

We describe in this chapter several methods for quantizing | A
the log-area-ratio parameters (LARs) used to represent a single ;.J
frame of speech. These methods were investigated in order to
determine which methods will be most effective for reducing the o
bit rate of an LPC vocoder from 2400 b/s to the range from 100 to v
200 b/s. :

We compared several clustering algorithms for vector 9
quantization. We found that a non-uniform binary clustering R
algorithm yields an acceptable performance with a significant

reduction in the computational load over the optimal K-means ]

. e
- ]
Il algorithm. We also compared vector quantization to optimal »,1
scalar quantization of the LARs. We found that a scalar ]
quantizer required 15 bits for quantizing 14 LARs whereas the .
, . . . ®
v vector quantizer required 10 bits for the same quantization e
- - 9
error, a savings of 30% in bit rate. These results and several }
3 . others will be discussed in more detail in the following :i
“-'. 1
Sections. !r‘
- ‘f‘
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3.2 Optimal scalar Quantization

In the Government's LPC~1l0 .standard vocoder, each LAR

parameter is quantized separately using a uniform quantizer. 1In

this Section, we describe the optimal scalar quantizer for n

jointly gaussian parameters. The performance of the optimal
scalar quantizer will be compared to that of a vector quantizer

for quantizing the LARs representing speech in Section 3.4.

The optimal scalar quantizer for a set éf n parameters,
represented by a vector x, minimizes the total mean square
quantization error of all parameters for a given number of bits
b. The n parameters are assumed to be Jjointly Gaussian. The

optimal scalar quantizer consists of the following three steps:

i) Parameter decorrelation
ii) Bit allocation

iii) Scalar quantization

We describe each of these steps below:

Parameter Decorrelation: Let Q be the matrix whose columns

are the eigenvectors of the covariance matrix C of the Gaussian
vector X. The new parameter vector y = Q'x will have

uncorrelated components, where Q' 1is the matrix transpose of
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Q. The transformation by Q' corresponds to a pure rotation of the

vector Xx.

Bit Allocation: The second step is to allocate the given b

bits to the components of the uncorrelated vector y. 1In [l] we
showed that the optimal bit allocation 1is such that each
component gets the number of bits necessary for the resulting
quantization error to be equal for all components whenever

possible. In that case, the savings due to bit allocation is:

4.1
=1 a *
A =3 logz(q)

where a is the arithmetic mean of the variances of all the

components of y and g is their geometric mean.

Scalar Quantization: The third and final step is to perform

the scalar quantization of each of the components {y;}®;.; using
the corresponding allocated bj; bits. Here one simply uses a Max

quantizer {2] designed for each component.

In the application of optimal scalar quantization to the
LARs, one estimates the covariance matrix C from a training set
of observed LAR vectors of speech. Then using the eigenvector
matrix Q, the LAR vector x is rotated to obtain the uncorrelated

vector y.
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Given b bits one determines the bit allocation and the n Max

quantizers by the following process consisting of b steps:

Initially all n components have zero bits allocated
to them and the quantization error is equal to their
variances. For each bit from 1 to b, we do the
following operations.

We allocate an additional bit to each component and
redesign the n Max quantizers with the new bit
allocation (i.e., using one more bit). Then, we
determine the component that has to largest decrease
in quantization error due to this additional bit.
The additional bit is therefore allocated to this
component.

The above process is repeated b times until all b
bits are allocated. At the end of this process we
will have n Max quantizers each using b bits

such that a total b bits are used in quantizing the
n LARs.

The above process is optimal for jointly Gaussian random
variables. 1In that case, one can show that the n Max quantizers
differ only by a scaling factor. Since the LARs of speech are
not jointly Gaussian, the n Max quantizers will differ by more
than a scaling factor. In this case, we expect that the resulting
scalar quantizer to be near optimal, We have found that the
eigenvector rotation saves 3 bits in quantizing the 14 LARs. For
a typical LPC vocoder operating at 2400 b/s, nearly 40 bits are

used in quantizing the LARs. 1In this case the savings due to the
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rotation 1is not very important. But for the very-low-rate
vocoder, we expect to use 10 to 15 bits for the LAR vector so
that the savings of 3 bit due to the eigenvector rotation is
necessary. We will compare optimal scalar quantization to vector

quantization in Section 3.4.

3.3 Clustering of Speech Spectra

Since we expect the LAR parameters of speech to exhibit a
statistical aependence that is beyond correlation, we evaluated
the use of vector quantization for quaﬁtizing the LAR vector.
The vector quantizers that we evaluated were all based on the
application of a clustering algofithm on a training data set of

observed LAR vectors of speech.

An M-level, n-dimensional vector quantizer is defined by a
partition P={Ci;i=1,M} of the space of all possible input vectors
into M disjoint regions, each denoted by Ciy- A template vector

i is also defined for each region C;. The input vector x is

quantized into the template z; if the vector x belongs to the

region Cjy.

A non-negative distortion measure, denoted by d4(x,z), is
used as an objective measure of the 1loss in accuracy in

representing an input vector x by a template z. An optimal
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vector quantizer must satisfy the following two necessary

conditions:

Condition 1l: Minimum distance classification.

The shape of the regions C; must guarantee that an input

vector is quantized to the nearest template.

X € C, » d(x,2z;) = d(x,z.) for lsj=M

For the Euclidean distance measure the regions are bounded by

. hyperplanes.

Condition 2:Template Selection

The templates of an optimal vector quantizer must minimize the
average distortion of their corresponding regions, i.e., the

template z; of the region C; must minimize

minimize S d(x,2)p(x)dx 4.3

z Ci

where p(x) is the probability density function x and the integral

is over the region Ci-

The above two conditions are necessary but not sufficient
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for an optimal vector quantizer. These two conditions have been
used to define an iterative clustering algorithm, called the K-
means algorithm, that has been used to design wvector quantizers

for the LPC models of speech.

3.4 K-Means Algorithm

The K-means.algorithm has been extensively used in pattern
recognition as a clustering algorithm. Using a training set of
observed LAR vectors, the K-means algorithm is a hill climbing
algorithm that determines a set of K clusters (in our case K=M)
that minimizes the clustering criterion. Each cluster will be
represented by a single template. We use the average mean square

quantization error as a clustering criterion.

The algorithm is described in detail in [3]. We present
below a brief description of the K-means algorithm when the
Euclidean distance on LARsS is used:

l. Choose by some adequate method an initial set of M
templates.

2. Classification: Classify all vectors in the training
data set to the nearest template. A set of M clusters
in thereby obt: ined where each cluster consists of all

vectors classified to a given template.

3. Template updating: For each cluster a new template is
obtained by averaging all vectors in the cluster.
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4., Repeat steps 2 and 3 until the algorithm converges.
The algorithm is guaranteed to converge to a local minimum of the
mean sgquare error, We wuse a binary clustering algorithm,
described in the following Section to determine a set of initial
templates. In this case, the K-means algorithm converges in few

iterations and usually 5 iterations are sufficient.

The major disadvantage of the K-means algorithm is the large
computational load required. To quantize an input vector, M
distance calculations are needed where M=2b and b is the number
of bits used to transmit the LPC spectrum. Typically we use 10
bits for the spectrum for an LPC vocoder that operates between
200 and 400 b/s. Hence, 1000 distance calculations are needed
for each input spectrum, In the next Section, we describe a
binary clustering algorithm that only requires 20 distance
calculations with a minimal increase in the quantization error.
The computational load is reduced by a factor of 50. The binary

clustering algorithm requires 2P distance calculations instead of

2b required for the K-means algorithm.

3.5 Binary Clustering

To avoid the computational load the K-means algorithm, we

used a hierarchical clustering algorithm. We present two binary

clustering algorithms.
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3.5.1 Uniform binary clustering

The binary clustering 1is applied sequentially in the
following manner on a training data set. Initially, the training
data set is divided into two clusters using the K-means algorithm
(where K=2). Then, eaéh cluster is further subdivided into two
clusters. This process can be represented by a uniform binary
tree where the root node corresponds to all the training Adata.
The two sons of the root node correspond to the €£first two
clusters. Then at each level, - each node will have two sons
corresponding toAthe clusters obtained by SubdiQiding the cluster
of the parent node. The process of subdivision is continued
until the desired number of clusters is obtained. The K-means

with K=2 is used for every subdivision.

To complete the specification of the binary clustering
algorithm, we need to describe how the initial set of two
templates is obtained when the K-means algorithm is used to
subdivide a given cluster into two clusters. We used the
following procedure. The mean vector of the parent cluster and
the LAR component with largest variance are determined. Then, a
hyperplane perpendicular to the component with largest variance
and going thru the mean is used to divide the cluster into two.
The means of the resulting two clusters are used as the initial
set of two templates for the K-means (K=2) algorithm. For

Gaussian clusters, this initial division is optimal.
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4.5.2 Non-uniform binary clustering

For each additional bit, the uniform binary clustering
algorithm divides all the clusters at a given depth on the binary
tree into two clusters. This uniform binary subdivision divides
all clusters whatever their contribution to the quantization
error, small or large. A more effective algorithm is to
adaptively divide the clusters that have the largest contribution
to the quantization error while not subdividing those that have

the smallest contribution.

The non-uniform binary clustering algorithm divides
sequentially the cluster that has the largest contribution to the
mean square error.This sequential process is performed until the
required number of clusters is obtained. In general, the
resulting binary tree is non-uniform, i.e., some clusters have
more subdivisions than others. We expect this algorithm to have a
smaller quantization error than the uniform binary for the same
bit rate. We compared the performance of these two algorithms on

a database of l4-dimensional LAR vectors of speech.

Using the mean square error on LARs, we compared the uniform

binary clustering, non-uniform binary clustering and the K-means
clustering algorithms. We have found that the non-uniform tree

saves 0.5 bits over the uniform tree for the same mean square
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error. The mean-square error of the

non-uniform binary

clustering and the K-means algorithm for a single speaker

database is shown in Fig. 3.1l. The non-uniform tree requires

only 0.5 bits more than the K-means algorithm for the same
quantization error. The small increase iﬁ bit rate of the non-
uniform binary clustering as compared to the K-means algorithm (s
acceptable given the large savings in computation by factor of 50
when a 10- bit codebook is used. We now routihely use the non-
uniform binary clustering for designing our VLR LPC vocoders. 1In
figure 3.1, we also show the mean-square error of the non-uniform
binary clustering on an all male multispeaker database, We find
that an additional 0.7 bits are needed €for the multispeaker
guantizer to have the same single speaker quantization error.
For the non-uniform binary clustering, we have used several
criteria for selecting which cluster to subdivide next. We

describe our results on this topic in the next Section.

3.5.2 Cluster Splitting Selection

The criterion used for selecting which cluster to subdivide
next in the non-uniform binary clustering can be varied as
described in the {3]. We found that choosing the cluster which
has the largest mean square error for further subdivision yields

the best vocoded speech quality. We note that this vocoder has a
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Fig. 4. Mean-square quantization error for non-uniform cluste'ring,
K-means clustering for a single speaker data.
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slightly higher quantization error (+19%) than the optimal non-
uniform binary clustering described in the previous paragraph.
The optimal non-uniform binary tree chooses the cluster with the
largest total swared error given by Ne? for further subdivision.
The mean square error of the cluster is given by e? and N is the
number of vectors in the cluster. However, the perceptual

difference in quality is rather small.

3.5.3 Distance Measures

We have compared the Euclidean distance on LARs with the
Itakura-Saito distortion measure as described in [3] using the K-
means algorithm. We compared two vocoders that used 8 bits for
coding the LPC Spectrum of speech without pre-emphasis. Both
vocoders used unguantized voicing, pitch and gain. The speech
qguality and intelligibility seemed to be similar for both
vocoders in an informal 1listening test. Recently a more
comprehensive study showed that the two distortion measures are
guite similar in performance. We also found that using
preemphasis with the Euclidean distance measure reduced the
speech quality when compared with the Euclidean distance on LARs
of non-preemphasized speech. The degradation can be

characterized as an increase in roughness,

Finally, for the above distance measures we found that the
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template vector of a cluster is obtained by an averaging process
in the right domzin as presented in [1]. For the
Euclidean distance, the template is the average of all LAR
vectors in a cluster. For the Itakura-Saito distance a weighted
average of the autocorrelation matrices of all LPC spectra in a
cluster is used to determine the template. The weight is the

inverse of the prediction gain Vp as discussed in [3].

3.6 Comparison of Scalar and Vector Quantization

The major Justification for wusing vector quantization
instead of scalar quantization for speech compression has been
based on the expected superior performance of the former method
due to the statistical dependence of the spectral parameters of a
frame of speech. We have seen that parameter correlation does
not contribute to a difference in performance between vector and
optimal scalar guantization. Hence, we have to determine if
speech exhibits any statistical dependence other than correlation
in order to justify the use of vector quantization. To estimate
the savings in bit rate due to statistical dependence, we
compared a vector quantizer with an optimal scalar quantizer for
a data base of speech spectra represented by 14 LARs. The
Euclidean distance was used to measure the quantization error.

The mean square quantization error for both quantizers is shown
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in Pig. 3.2. The top horizontal axis shows the cumulative bit
allcoation for the eigenvector that is receuving the additional
bit. We found that the vector quantizer was better than the
scalar quantizer. The mean-square error of the 10-bit vector
quantizer was equal to that of the 15-bit optimal scalar, a

savings of 5 bits.

'The advantage of vector quantization over optimal scalar
quantization (a gain of 5 bits for the same mean-square error) is
most significant for very-low-rate vocoding of speech. The size
of available data sets limits of the bit rate of optimal vector
quantizers to about 10 to 12 bits, For higher bit rates,
suboptimal vector quantizers such as cascaded clustering which is
described below may be used. However, the resulting loss in
optimality reduces significantly the advantage of vector
quantization over optimal scalar quantization, When we compared
the two methods (cascaded and scalar) at 30 bits, we found
cascaded vector quantization to be 1less robust than optimal
scalar which resulted in the same performance for botn methods.
Therefore, at these higher bit rates, a scalar quantization

methods would be most effective.

Recent published results ([6] wusing the Itakura-Saito
distance claim an advantage of 14-bits for vector quantization
over scalar quantization. This larger gain may be explained by

two factors:
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Fig. 5. Comparison of the mean-square error of vector quantization
and scalar quantization. Ej(j) is the ith eigenvector
-with an allocation of j bits.
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1. The scalar quantizer used for the comparison was the
o minimum deviation gquantizer [7]. This quantizer is
- suboptimal for the Itakura-Saito distance used for
vector quantization. This distance measure is not
separable into components so that a scalar quantizer
can be designed to get the minimum distortion.

2. The parameters used for scalar quantization were not
decorrelated., We have determined that the eigenvector
rotation of the LARs saved 3 bits.

Even though the gain due to vector quantization is less than
originally published, the reduction of 30% in the bit rate is
important for the VLR vocoder and the additional complexity can

be justified for this vocoder.

3.7 Cascaded Clustering

The above clustering algorithms (K-means and binary
clustering) require an amount of training data that grows f'}
exponentially with the bit rate. For example, one hour of speech
data is sufficient for no more than 1l to 12 bits of clustering. Eﬁq
The above algorithms can be described as a one-stage algorithms: ';'

an input vector is guantized in one step. 0

To reduce the amount of training data required (in fact, we

also reduce the computational load), we perform the clustering in .-1
two stages. Initially, a clustering (using either K-means or o
binary ‘clustering) is performed using r bits. We refer to this 1_1

:.»1

43




Report No. 5231 Bolt Beranek and Newman Inc.

first stage as an r-bit stage. Then, each vector in the training

data is quantized to the nearest template and the Quantization

error vector is computed. The gquantization error vector is
called a deviation vector. The data set of all deviation vectors
is used to perform a second stage of clustering of t bits (t-bit
stage). The two sets of templates are used as a vector quantizer
in the following cascaded manner. First, the nearest template to
an input vector form the r-bit stage is determined. Then, the
deviation (or quantization error vector) is quantized using the

templates from the second t-bit stage.

The bit rate of cascaded clustering is r+t bits, yet only
2f42t templates have to be estimated instead of 2t+r, Therefore,

both the amount of training data and the number of distance

MNEPLIPAeY S \

calculations in quantization are significantly reduced (both are
proportional to 2%+2% instead of 2f*t, By requiring a smaller
training set and less computation than the above clustering

algorithms (K-means and hierarchical clustering), the cascaded

clustering method has a larger quantization error for the same -
bit rate. This suboptimal performance can be predicted by the
following model.In cascaded clustering, we group all deviations
from all the clusters together. Therefore we are implicitly -
assuming that all clusters of the first stage have the same

deviations, i.e., all clusters have the same statistics or shape.
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In other words, we are assuming that we can model the statistics
of each cluster by the average statistics over all clusters.
Since this 1is generally not true, cascaded clustering is
suboptimal. Basically, by combining the deviations we are
reducing the statistical dependence gain. To partially improve
the performance of cascaded <clustering, we increased the
similarity of the .clusters by using a principal component
decomposition of the deviations before combining them. We
represented the deviations of each cluster along the principal
compohents of the corresponding cluster. Then we grouped all
deviations. This corresponds to rotating the clusters so that

their principal components align before superimposing them.

We compared several cascaded clustering algorithms on speech
data, represented by 14 LAR vectors, using the Euclidean
distance. Fig. 3.3 shows the mean square error of the different
algorithms versus the bit rate. . The l-biﬁ stage curve
corresponds to the performance of cascaded clustering using
several stages where each stage corresponds to l-bit clustering.
After 5 stages (or 5 bits) the error decreases at a rate of 6
dB/average bit, which would be obtained with optimal scalar
quantization. Therefore, the statistical dependence is reduced
to correlation by merging deviations for five stages. The

performance of l-bit stage cascaded clustering can be improved by
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using an eigenvector rotation on the cluster as explained above.
The gain due to the rotation is 2 bits, i.e., the asymptotic
behavior similar to scalar quantization is aelayed to seven
stages. Using a 4-bit stage instead of a 1l-bit stage with
rotation improves performance. However, at the third 4-bit stage
(or at 8 bits of cascade clustering) the slope reaches the 6 dB
limit of scalar quantization. Hence, one should use the largest
bit allocation to the first stage. We also have found that if we
use 10 bits for the first stage, the performance of the second
stage 1is equivalent to optimal scalar quantization. In that
case, an optimal scalar quantizer may be used for the second
stage instead of clustering, which indicates that no statistical
dependence other than correlation is exhibited by the deviations.
As we reported in Section 3, a cascaded clustering vector

quantizer (10 bit vector quantizer for the first stage with a 20

bit scalar quantizer for the second stage) has the same

performance as our optimal 30 bit optimal scalar quantizer.
Therefore, at higher bit rates an optimal scalar quantizer would
be preferred to cascaded <clustering due to its simpler

implementation,

The binary clustering vector gquantizer has been the most
effective single frame quantization method for vocoding speech

from 300 b/s to 290 b/s. Typically, 10 bits per transmission
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T 1bit stage
0.40 dB/bit
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1 3 9 10 11 12 bits
1-bit stage & rotation
0.42 dB/hit
-
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" .0.46 dB/bit
-+~
binary clu.tering
-0.93 dB/bit
+
Fig. 6. Mean square error of cascaded clustering.
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have been used for the spectrum. By varying the number of
transmissions per second and the bit rate of pitch, gain, and
voicing, we can vary the vocoder bit rate. AT 400 b/s the
quality of the vocoded original is very close to 2400 b/s for a

single speaker system.

We also implemented a VLR vocoder that uses a 6 bit codebook
for the LPC spectrum and a VFR algorithm with an average frame
rate of 30 b/s. Pitch and gain were not quantized. The output
speech of this single speaker vocoder was quite intelligible.
This vocoder was used for the Markov chain models of speech

described in the following Section.
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4. MARKOV CHAIN MODELS OF SPEECH

4.1 1Introduction

We have described in the previcus chapter several methods
for quantizing and transmitting the spectral parameters of a
singlg frame of speech. We have found that a vector quantizer
uses the statistical dependence of the LAR parameters of a singly
frame to minimize the required bit rate for vocoding speech. 1In
particular, intelligible speech can be vocoded for a single male
talker by using a 6-bit spectral codebook with a VFR algorithm
that uses an average from rate of 30 b/s. The bit rate of 180
b/s for the spectral information alone was too high for the goal

of a very-low-rate vocoder operating in the range of 100-200 b/s.

To reduce the bit rate of the spectral informatioﬁ in the
above vocoder, we investigated the use of a Markov chain to model
the statistical dependence of consecutively transmitted spectra,
i.e., the output of the VFR algorithm was modeled as .a.Markov
chain with an alphabet of 64 (6 bits) symbols. We evaluated 3
basic models: a first order Markov chain, a variable order Markov
chain and a variable resolution Markov chain. We describe below

each model. Then we present our simulation results.

If a fixed length code is used in coding the output of the
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VFR algorithm, then 6 bits will be used at each transmission
point. If a variable length code (entropy coding) is used, the
bit rate could be reduced to the entropy of the VFR transmission
sequence of 5.85 bits. We did not implement any variable length
encoding, however we used entropy to compare the bit rate

reductions of the several Markov models examined.

4.2 PFirst Order Markov Chain

A Markov chain with an alphabet of M sypbols (M spectral
template) is characterized by a MxM transition probability matrix
[Pij]‘ The transition probability Pij is the -probability that
symbol j will follow symbol i. The M2 transition probabilities
can be estimated by counting the observed transitions in a large
database. For M=64 we need to estimate 4096 probabilities.
Requiring an average of 10 observations for each probability, we
will need 15 minutes of speech. Using a 1 hour database, the
entropy of the first order chain was found to be 4.75. Hence,
entropy coding and the first order model will save l.1 bits at

each transmission.

A second order chain uses the two previous symbol to predict

the current symbol. We expect a 2nd order chain to have a lower

entropy than a first order Markov chain. However, the amount of

1]
L aa e AAL.&’




B R T T T - - . g

Report No. 5231 Bolt Beranek and Newman Inc.

data needed to estimate the 2nd order model is M times lafger
than that of the first order chain which would require in our
case 16 hours of speech. We only have a maximum of one hour of
speech. Due to the limited amount of available training data, we
introduced the variable order and variable resolution Markov

models [4].

4.3 Variable Order Markov Model

The set of symbols that is used to predict the following
symbol is called a state. For a first order Markov chain there
are M states (M=64 in our case), for a second order chain there
are M2 states (4096 states), where each state corresponds to a
pair of consecutive symbols. In a variable order Markov chain we
do not estimate the transition probability dis;ribution for each
state of a kth order Markov chain; Instead we determine the set
of the N most probable strings of symbols of any length up to
k. These are considered as the states of the Markov chain. Since
these will in general have different lengths, the states of our
Markov model will correspond to states of Markov chains of order
from zero td k. We call this model the variable order Markov
chain. The number of states N is determined by the available
training data set.” For a model with N=100 states, the entropy

was 4.5 bits as compared with the entropy of 4.75 of a first
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order chain which has 64 states. In this case, the variable
order chain had 57 first order states. The states of order 2,3,
and 4 were 36;5, and 2, respectively. This variable order chain
had quite similar states to the order chain which explains the

similarity in their entropy rate.

4.4 Variable Resolution Markov Model

Given a fixed amount of training data, we wanted to use as
many high order states as possible. Since'the total number of
states is fixed for a given amount of training data, we used the
idea of variable spectral resolution to increase the average
order of the states of our Markov model. The idea of a variable
resolution Markov model can best be explained by an example. A
state string X, oX,_1Xp which is a third order state used to
predict the next symbol Xle is represented by using the
following three alphabets. For the most recent symbol x, it
uses an alphabet of size M, symbols, for the previous symbol x,_;
it uses a an alphabet of M, <M, symbols thereby using 1less
spectral resolution to represent that spectrum. Similarly, for
the oldest symbol x,_, it uses M,- symbol alphabet where M,<M;
using even 1less spectral resolution in representing the most
remote past. For a variable resolution chain of order k, there

is usually an optimal combination of the size (resolution) of the

alphabets Mg thru M, _, as demonstrated in [3].
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We quantized 30 minutes of speech from a single male speaker

using a 6 bit codebook with a VFR algorithm with an average.frame

rate of 30 b/s. Using this database, the optimal resolution for :
a 256 states variable resolution chain is given by M 564, M=32, : J
M,=16, M3=8, M,=4. The entropy of the resulting Markov chain is ‘? 
3.99 bits a reduction of 1.85 bits (32%) from the zero-order "
model. The resulting bit rate would be 120 b/s for the spectral ]
" information alone. To achieve this bit rate variable length ; f
encoding is necessary. Since variable length encoding must be f-i
used, channel errors will have a severe effect on a vocoder based ; :
on the variable resolution model. We discuss in the next Section D
a more powerful method for the very-low-rate vocoding'of speech ::f:
that is based on segment quantization., Similarly to the Markov ‘
model, segment quantization uses tihe statistical dependence of o
consecutive spectra in speech to minimize the bit rate. But 'i
segment quantization has a more robust behavior in the presence }}ﬁa
of channed errors and does not require variable length encoding. ;“pﬁ
s
.
."u
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S. SEGMENT VOCODER

5.1 Introduction

_The performance of the phonetic vocoder was only 62% correct
phoneme recognition rate. We expected that a phoneme recognition
rate of at least 80% is necessary for the vocoder speech to be
intelligible in context. To improve the performance of the
phonetic vocoder a large amount of hand-labelled speech is needed
to get a better estimate of the distribution of the diphone
templates. To avoid the excessively large amount of human effort
to label the required large database of speech, we considered an
alternate approach to the phonetic vocoder. We hypothesized that
phonetic recognition may be unnecessary for the very-low-rate
coding of speech in the range of 100 to 200 b/s. The diphone
vocoder described in Section 2 is an example of a vocoder. that
does not use recognition. The segment vocoder ﬁay be considered
as an extension of the diphone vocoder where speech is modeled as
a sequence of segments not necessarily diphones. While a segment
is analogous to a diphone it does not necessarily correspond to
such a phonetic unit. Also, an automatic segmentation algorithm
can be used to segment speech and avoid the extensive human

effort of hand labelling required for the diphone vocoder.
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An alternative viewpoint that leads to the segment vocoder

is based on a model that combines the vector quantization process
and the Markov model of speech. A segment which consiéts of a
variable number of consecutive spectral frames can be quantized
as a single unit. The work on Markov modeling of speech
determined that <consecutive spectra are highly dependent
therefore not all sequences of spectra are possibie. In this
case 1is a vector quantizer that benefits from both the
statistical dependence of the LARs of a single frame as well as
from the statistical dependence of consecutive frames would be
effective. In the segment vocoder, we exploit the statistical

dependence in speech by quantizing a segment as a single unit.

5.2 Description of Segment Vocoder

In figure 5.1 we show the block diagram of the segment
vocoder. The input is the unquantized LPC parameters at 100 b/s.
The input 1is segmented with an average segment rate of 11
segments/s. Then each segment is quantized to the nearest
segment template in the code book using the proper distance
measure. At the receiver, the received segment templates are
concatenated in sequence. A smoothing algorithm is used to
reduce the spectral parameter discontinuity between adjacent

segments, The resulting parameter tracks are used to drive the
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usual LPC synthesizer. We describe below all the above stages of
the segment vocoder in more detail and discuss the performance of

the techniques used for each stage.

There are four major benefits for the segment vocoder.

1. Phonetic recognition is not necessary. The input
speech is matched spectrally as closely as possible
leaving the difficult task of recognizing the phoneme
sequence at the receiver output to the listener.

2, Only naturally occurring sequences of spectra are used
to determine the segment templates. Therefore, the ]
segment vocoder uses the statistical dependence of )
consecutive spectral frames to minimize the bit rate.

PO W TN

3. As will be demonstrated later, the gain track and
voicing pattern of a segment are highly dependent on
the spectral sequence. The template gain track and
voicing can be used at the receiver instead of the
input's gain track and voicing. Only a level
adjustment of the gain track is transmitted for each
segment.

¢

T

4, Finally, using naturally occurring segments as
templates instead of an average template as is usual in
clustering results in a crisper speech quality as
discussed below. 1 This appears to hold since the
timing pattern of a segment is not smeared by -
averaging. .

5.3 Segmentation

The major advantage of the segment vocoder over the diphone )

vocoder is that it is completely unsupervised. We use an .
automatic segmentation algorithm based on spectral derivatives as v

.discussed in (5]. We considered three types of segmentations:
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o Fixed 1length segments: each block of n frames was
considered as one segment.

O Phoneme-like segments: In this case speech is

considered as a sequence of steady states separated by
relatively fast transitions. A phoneme-like segment was

defined as the sequence of frames from the middle of a

transition to the middle of the following transition.

o Diphone-like segments: A diphone-like segment is
defined from the middle of a steady-state to the middle

of the following steady state.

We found that the diphone-like segments have the best
quality and intelligibility in our informal listening tests. We
also compared the diphone-like segmentation to the true diphone
segmentation as obtained by using our hand labelled database.
The two segmentations resulted in the same intelligibility and

quality. We therefore continued using. the diphone-like

segmentation for the experiments described below.

5.4 Distance Measure

Two segments will usually have different total durations.
Therefore, the two segments must be time-aligned before
evaluating the distance between them. Instead of wusing the
computationally expensive dynamic time-warping approach used in
isolated word recognition, we used a simple approximation called

space-sampling. As described in (6], each segment is considered

as a trajectory in spectral parameter space (14 LARS). The
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segment is resampled at M equi-distant points along that
trajectory. The corresponding spatial samples are assumed to be
time aligned and the distance between two segments is the sum of
the Euclidean distance between the M pairs of spatial samples.
The above distance measure over-emphasizes the importance of
transitions. We used a duration weighting as described in [3] to
increase the importance of the steady-states portions of a
segment. The contribution of each pair of space-samples was
weighed by the duration of the input space-samples. In this
case, the steady-states are emphasized and the vocoder speech

quality improved significantly.

5.5 Input Quantization

The segment vocoder described above uses independent

segmentation and quantization. The input is initially segmented

with an average segment rate of 11 seg/s. Then, each input
segment is quantized to the nearest template. This method of
input quantization yields occasionally unintelligible segments. : ]
In this case, the segment generally encompasses several phonemes | )
and has a large quantization error. To avoid the large
quantization error of these segments we used the following method

called joint segmentation and quantization.
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Joint Segmentation and Quantization

In this approach, we consider all possible segmentations of the
input such that the constraints on the segment durations are
satisfied. We require a minimum duration of 4 frames and a
.maximum duration of 18 frames. For each possible input
segmentation, the sequence of input segments is quantized. . The
segmentation that results in the smallest overall quantization
error is selected as the optimal input segmentation. As
described in [5], a dynamic programming search 1is used to
implement efficiently the joint segmentation and quantization
procedure. We also use a hybrid binary look-up in the segment
quantization process to minimize the number of distance

calculation performed.

The hybrid binary look-up was derived using the non-ﬁniform
binary clustering algorithm de&eloped for vector quantization and
described in Section 3. The binary clustering algorithm was used
to divide the set of 8000 segment templates (13 bits) into 512
clusters (9 bits) each containing an average of 16 templates.
Each segment template was represented using 10 space-samples and
each space-sample consisted of the first 8 LARs. The limitation
of 8 LARs wasAdue to the virtual memory size limitation on our
VAX computer system. The binary look-up was used to determine

which cluster mean was nearest to an input spectrum. Then an

61

R TNy TRy s T, W TR T Ty e e W R T T
~ - Dl - el Rty -

-;-qg;u,;;L;;‘L;;.ff

. PO

¥

4




Report No. 5231 Bolt Beranek and Newman Inc.

exhaustive search was used to determine the nearest template to
the input from the 16 templates of the nearest cluster. This
requires an average of 18+16=34 distance calculations instead of

8000, a savings of a factor of 200.

The joint segmentation and quantization method requires a
large computational load of 300 times real time on the VAX when
the binary look-up is used. This large computational load is
justified since the resulting segment vocoder speech quality is
better than the segment vocoder that  uses independent

segmentation and quantization. Further, the new vocoder avoids

the problem of having input segments which are not well matched
by a segment~template. The joint segmentation and quantization

method must be used in order to satisfy the operational

requirements of vocoder speech intelligibility in context.

5.6 Segment Template Selection

In the above experiments we did not specify how the set of
segment templated was selected. We will readily remedy this
deficiency. The set of segment templates is obtained by
automatically segmenting a training database of 15 minutes of
continuous speech. With average segment rate of 11 seg/s and

deleting long silence intervals, we obtain 8000 segments.
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All segments in this et are used as segment templates. By
assuming that the set of 8000 segments is a random sample of
speech segments, the above segment qﬁantizer is a random
quantizer. The performance of such a random quantizer is
expected to be near-optimal in analogy to the following
situation: For a Gaussian random vector, with independent
components, a random quantizer can be chosen such that the
expected quantization error 1is asymptotically equal to the
distortion-rate function. for a given bit rate (measured by
entropy) as the dimensionality of the vector approaches infinity

[7]. While the above conditions are not satisfied, we expect a
random gquantizer €for the segment vocoder to be near-optimal
because fo the large dimensionality of 140 of a segment. To
determine the validity of this hypothesis, we compared the above
random qdantizer to a ‘quantizer derived by using the binary
clustering algorithm on segments. We compare below the_ two

methods by segment quantization.

5.6.1 Segment Clustering

The binary clustering algorithm, used in the hybrid binary
look-up described in Section 5, was used to determine a set of
8000 clusters by clustering a set of 32000 segments [8]. For

each cluster of segments two types of templates were defined:
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The mean segment template and the nearest to the mean segment

template.

The mean segment template was obtained by averaging all the
segments in a cluster using the time-alignment specified by
space-sampling, i.e., the detailed timing of all segments was
averaged as discussed in [8]. The nearest to.the mean segment
template was chosen as that segment in the cluster that was

closest to the mean segment of the cluster.

We compared both types of templates to the templates of the
random quantizer. The mean segment template quantizer requires 2
bits less templates than the random quantizer for the same mean
square error, But for the same bit rate, we found that the
Irandom quantize has a higher quality speech than the mean segment
quantizer. The higher quality speech was obtained in spite of
the larger quahtization error of the random quantizer.
Presumably this is due to the smearing of the detailed timing in

the averaging process used to obtain the mean segment template.

To avoid the smearing of the detailed timing, we used the
nearest to the mean segment template. In this case we found fhat
the random gquantizer and the nearest to the mean template

quantize to result in the same quantization error and the same

subjective wvocoded speech quality. The nearest to the mean
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clustering algorithm is equivalent to the random quantizer
i:ﬁ because a very small training set is used for clustering; an
Iﬂ average of 16 segments per cluster with a dimensionality of 140.
Therefore, we will use a random quantizer for seiecting a set of

templates for the segment vocoder.

- In the next section, we describe the methods used for

.quantizing the other parameters of an LPC vocoder.

5.7 Quantization of Source Parameters

An input segment is quantized to the nearest template. At

the receiver, the detailed timing of the template is used for

sgnthesis. 1 The total duration of the input segment can be
N quantized with 3 bit/s such that most errors are ~with;n a;4
!5 one frame or less. The input segment duration is used to >‘"f
linearly scale the corresponding segment template at the f:?
receiver, “‘}
- -
The gain track of a segment template was found to match the O
gain trade of the input segment, i.e., if two segments are fuf
spectraliy close then their gain tracks are similar. However, a ~::;
= level adjustment to match the loudness of the input segment N
was transmitted using 2 bits. A gain normalization algorithm was f;
- used to minimize the range of the level adjustments as described ;ft;
in [5].
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In addition to the statistical dependence of the gain track

on the spectral sequence, we found that the voicing pattern of a
segment to be completely specified by the spectral sequence. We
do not transmit voicing in the segment vocoder. The segment

template voicihg is used at the receiver.

Finally, we modeled pitch by a piece wise linear model.
Pitch was assumed to be linear from the middle of a transition
region to the middle of the following transition region. An
adaptive quantizer was used to code the change in pitch from one
segment to the following segment. We used a 2 level quantizer (1
bit) with an adaptive scaling factor that is proportional to the
square root of the duration between two successive transition

regions.

Using the above quantization techniques, we implemented a
fully coded segment vocoder that uses 20 bits for each segment
and an average segment rate of 11 seg/s. We found that this
vocoder can vocode speech with good quality and intelligibility
with an average bit rate of 220 b/s. To reduce the bit rate
further, we used a segment network analogous to the diphone
network. We describe below the segment network used and the
complete vocoder that operates at 150 b/s. This wvocoder was

demonstrated at the final ARPA NSC Meeting in June, 1982.
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5.8 Segment Network

To reduce the bit rate of the segment vocoder to 150 b/s, we
used a segment network to constrain the number of segment
templates that can be used in quantizing the input. The segment
network 1is analogous to the diphone network in that only a
specific subset of templates is allowed to follow a segment
template. For example, if the current input segment is quantized
to a_given template, then the following input segment must be
quantized to a given template, then the following input segment

must be quantized to a template that belongs to a subset of the

segment templates as determined by the segment network. This

subset is the set of all segment templates that follow the

current template in the network.

Ideally, one should choose a network that allows all
possible segment template sequences so that the quantization
error is to inversed. A general method for choosing the segment
network would be to determine statistically which segments are
most likely to follow a given segment. This approach would
require a prohibitive amount of data. We used an alternative
approach based on a model that the spectral parameters of speech

are continuous.
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6. MULTIPLE SPEAKER SYNTHESIS

In any of the very-low-rate vocoders discussed in this
report, the spectral information is reduced by removing as much
redundancy as possible. One factor in reducing the information
to be transmitted, is that the speech model is derived from only
one speaker. For example, the speech produced by the diphone
synthesis part of the phonetic vocoder sounds much like the
speaker who spoke the database of diphone templates. However it
is desirable for the output speech to sound like the speaker who
is talking (vocoder-user). Therefore, we investigated ways of
making the output of the phonetic synthesizer sound more like the
speaker, withou£ having to extract a new set of diphone
templates, and using only a small amount of information that
could be tranémitted on the same very-low-rate transmission
channel. These techniques can also be applied to the other VLR

vocoders described in this report.

The basic procedure used was to require the new speaker to
speak for a period of from 20 seconds to 1 minute. The material
spoken could be any arbitrary text. The speech supplied was then
analyzed to extract several parameters which were then used to
modify the diphone templates used during synthesis, such that the
speech sounded more like the vocoder-user than like fhe database

talker.
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The parameters measured and used in the transformation are
the average vocal tract length (VTL) of the speaker, and the
long-term average (LTA) power spectrum for voiced, unvoiced, and
silence from the speaker. This procedure is described in more

detail in QPR3.

6.1 Extracting Speaker Specific Parameters

The first task in this method of multiple speaker synthesis
is to extract the speaker parameters from a speech sample. 1In
experimenting with samples of varying length, we have found that
at least twenty seconds of speech (excluding silences) should be
analyzed in order to obtain reliable estimates for the speaker

parameters.

The first parameter to extract is the average vocal tract
length. This can only be reliably estimated from the formants
and bandwidths during open vowels. Therefore, the program uses
several heuristics to find those frames in which to measurement
of VTL would yield reliable results. Specifically, it checks for
voiced frames, with energy close to the local maxima, and with
formant frequencies in the ranges for vowels. Furthermore, any
estimates of VTL outside the range of 10-20 cm are discarded.

Then the average of those accepted values is computed. A cursory
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examination of the resulting averages agreed with our subjective

feeling for the head size of the different talkers.

The second, and probably more important set of features
extracted was the three LTA spectra for the speaker. These model
the source spectrum and average vocal tract shape of the speaker.
The LTA spectrum was computed separately for voiced, unvoiced,
and silence spectra, since it was félt that these résulted from

separate mechanisms, and therefore could vary independently.

The first task was to classify speech spectra into the three
classes mentioned above. For this, we used the Acoustic-Phonetic
Experiment Facility (APEF). The classifier designed was a simple
linear classifier that uses as its features, the energy in the
frame, relative to the 5 percentile energy, and the number of
zero-crossing in the frame. | Each 129-point LTA spectrum is

smoothed using a 13 point raised cosine window.

We estimated that the average VTL and the three LTA spectra
could be quantized and transmitted using only about 150 bits,

which would take only 1.5 seconds through a 100 b/s channel.

6.2 Synthesis Using Speaker-Specific Parameters

The diphone synthesizer needs the speaker parameters of
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average VTL and LTA spectra for both the database speaker, whose
speech was used to create the diphone database, and for the
vocoder-user speaker, whose voice the synthesizer is trying to
duplicate. Given these speaker-specific parameters, and the
sequence of phonemes, durations, and pitches generated by the
phonetic recognizer, the phonetic synthesizer can produce speech

that sounds like the vocoder user.

Each spectrum in the diphone templates used in synthesis is
modified independently in the following way. Basically, each
spectrum is multipled by the ratio of LTA spectra of the desired
speaker, and the database speaker, for the same class of spectra.
Also, the frequency axis is scaled according to the ratio of
average VTL's. However, the order of these transformations is
important. First, the diphone template spectrum classified as to
being voiced, unvoiced, or silence. Even though we know this
information from the phcneme, we use the same classifier used in
the analysis of the speaker samples. The spectrum is then
divided by the appropriate LTA spectrum for the database speaker
to remove his speaking characteristics. Then, the frequency axis
is linearly scaled according to the ratio of average VIL's of the
speakers. Finally, the characteristics of the vocoder-user are

inserted by multiplying by his LTA spectrum.
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6.3 Evaluation of Multiple Speaker Synthesis

We have analyzed this multiple speaker synthesis process for
20 new speakers. The results of our effort in multiple speaker
synthesis are encouraging. There are three main conclusions that
can be drawn. First, since the phonetic vocoder transmits
phoneme duration and pitch, these speaker characteristics are
conveyed directly. Second, for speakers whose long-term spectra
were markedly different from the database speaker, there is an
audible change in the synthetic output, and the speech can sound

very similar to the intended speaker. The third result is that

some of the vocoder users, sound quite different from the

database speaker, .even though they appear to have similar LTA
spectra and VTL. Therefore, the transformation does very little,
and the transformed speech still sounds somewhat 1like the
database speaker. It appears that the speaker differences for
these speakers are at a more detailed level, such as the way they
pronounce particular phonemes, the phase characteristics of their

voice, or in the amount of nasalization they use, to name a few.

Thus, for roughly half the speakers, the transformation had
the desired effect, while for the others, .the speakers were
similar enough that the overall changes made didn't make them

more similar. In other words, the synthesizer output never
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sounds very different from the vocoder-user, but it is sometimes
distinguishable from speech spoken by the vocoder-user. A more
detailed speaker model would necessarily require phoneme specific
information to be transmitted. This could be accomplished by
requiring the speaker to say a particular known passage, such
that the program cpuld extract spectra from known phonemes.
These could then be used to modify the diphones associated with

those phonemes.

While this method has been tested only for synthesis, it
seems reasonable that the same transformation would make the
recognition program more able to recognize the speech o0of new

speakers, without extensive training to that new speaker.
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SEGMENT QUANTIZATION FOR
VERY-LOW-RATE SPEECH CODING

S. Roucos, R. Schwartz, J. Makhoul

Bolt Beranek and Newman Inc.

Cambridge, MA 02238

ABSTRACT

We introduce a new method for very-low-rate
vocoding that models the input speech as a sequence
of variable-length segments. A segment is a
sequence of frames, where each frame is represented
by a spectrum, pitch and gain. We use an automatic
segmentation algorithm to obtain segments with an
average duration comparable to that of a phoneme.
A segment is quantized as a single block. The
distance measure used for quantization incorporates
the appropriate time alignment of two segments. We
employ a computationally efficient metric that does
not use the usual dynamic programming time warping.
Two basic vocoders using the above approach of
block quantization have been used to transmit
intelligible speech at 200 b/s.

1. INTRODUCTION

Block quantization has been used for coding
the parameters of an LPC vocoder to achieve a
transaission rate of 800 b/s (1]. In this paper,
we describe a method based on block quantization
that reduces the bit rate of an LPC vocoder to 200
b/s. Block quantization is only attractive for
very-low-rate (VLR) systems for the following two
reasons. First, the savings in bit rate which is
usually a fixed number of bits, is most significant
(percentage of bit rate) at low rates, Second, the
exponential growth of the quantizer complexity with
increasing bit rate makes only VLR systeams
practical.

The new method represents the output of LPC
analysis (100 frames/s) as a sequence of segments.
Each segment consists of a variable number of
consecutive frames. The LPC spectra in a segment
are quantized as a single block independently from
other segments. We refer to this block quantizer
(vocoder) as a segment quantizer (vocoder). Since
we expect consecutive LPC spectra in speech to be
highly dependent, only a fraction of all
permutations of spectra (assumed quantized) will
actually occur. Hence the bit rate of the segment
vocoder will be lower than an LPC vocoder based on
separately quantizing single frames.

An alternative approach that leads to the
segment vocoder is based on our work on the
phonetic vocoder [2]. To achieve a transmission
rate around 100 b/s, we model speech by a diphone
network. The nodes in the diphone network
correspond to phonemes. A pair of nodes are
connected by several transitions: each transition

represents the LPC parameters of a typical
occurrence of the diphone defined by the phonenme
pair. Hence we have several templates for the same
diphone. The output of the vocoder is obtained by
synthesizing the best path in the network that
matches the input speech. The bit rate of this
vocoder is around 130 b/s but the resulting speech
has not been very intelligible. To improve the
intelligibility, we simplified the network. Any
diphone template was allowed to follow any template
(hence a sequence of templates does not necessarily
correspond to a sequence of phonsmes). The
resulting vocoder is essentially a segment vocoder
using diphones as segments., While the bit rate of
this vocoder is around 200 b/s, the output speech
is intelligible. Since hand labeling of speech is
necessary to obtain the diphone templates, a large
human effort {s required to implement this vocoder.
To - avoid this effort, we propose to use an
automatic segmentation algorithm to define the
segments.

Besides the reduction {n the bit rate of the
spectral information over a single frame block
quantizer (vector quantization), the segment
vocoder achieves additional savings in coding the
side information of an LPC vocoder (particularly
gain and voicing). For each segment, we transmit a
single pitch value, a segment duration and a gain
adjustment. Since the gain track is highly
dependent on the spectral sequence in a segment as
shown in Section 4, gain 1is not transmitted.
Rather, the gain track of the segment template is
used and only an adjustment to the overall loudness
of the segment is transmitted. Similarly, voicing
is not transmitted and is obtained from the
template. Another possible advantage of the
segment vocoder is that the segment templates used
are actual speech trajectories that have occurred.
Hence, the output speech of the vocoder will have a
better quality (increased naturalness) than other
methods (e.g., linear interpolation in a variable
frame rate vocoder). In Section 2 we present the
segmnentation algorithm and the distance measure
used for quantization. In Section 3 we describe
the vocoder, and in Section U4 we present our
experimental results.

2. SEGMENTATION AND DISTANCE MEASURE
We can describe the segments of any automatic

segmentation algorithm by the following three
characteristics:
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o total segment duration.

o trajectory in spectral parameter space. Each
segment is viewed as a directed trajectory in
farueter space where detailed iming is
gnored but the direction of time |{s
preserved.

o detailed timing. Even if two segments have
the same trajectory and total duration, they
may differ in the detailed timing.

We have used the above decomposition of the
segment variations in determing the coding methods
of the segment vocoder, as described below. While
fixed length segmentation is usually used for block
quantization, the diphone model of speech suggests
that a variable length segmentation might have a
lower rate for the same quantization error, Fixed
length segmentation will require more segment
templates than variable length segmentation for the
block quantizer since:

1. The lack of synchrony between fixed length
segmentation and segment production in speech
will produce all shifts of a given segment
even {f all segments have the same duration.

2. "Natural" segment durations will sometimes
differ from the chosen fixed segment length
resulting in segments that correspond to
either pieces of M"natural”™ segments or the
concatenation of pieces of different segments,
These need not occur if a proper segmentation
can be used.

One can wuse any of several segmentation
algorithas to define the variable length segments,
We used a simple algorithm that considers speech as
a succession of steady states separated by
transitions. Two spectral time-derivatives were
thresholded to determine the middle of transitions.
The derivatives are:

dy(n) = }x(n) - x(n-1)112 , 1s1,3 (1

where x(n) is a vector of 14 log area ratios (LARs)
representing the nth frame. el1 detects fast
transitions while d, detects slower transitions,
The steady states were determined at the points of
minfimum d, within a window between two transitions,
The segments were defined to begin and end in the
middle of consecutive steady-states. The lower the
threshold on the derivatives, the higher the
segment rate. However, the distributions of the
spectral derivatives are essentially bimodal (low
values and high values) so that a segment rate
higher than 13/s is not reasonable, We decided to
use 11/3 (equal to expected phoneme rate). The
resulting segmentation of the automatic algorithm
has been found to be generally similar to the
diphone segmentation.

Ristance Matric

In defining the distance measure between two
segments, we have to specify the time alignment of
the variable length segments. The distance measure
we propose defines implicitly the required time
warping. The sequence of LPC spectra in a segment
represents a piecewise linear trajectory in the 14
dimensional LAR space., The total length (using a
Euclidean norm on LARsS) of a segment 1is computed
and i3 used to define an "equi-spaced"™ sampled
representation of the segment, i.e., the segment is

2nd

4

e time sampling

X eqgui-distant sampling

lst LAR

FIGURE 1. Two segments in parameter space.

resampled at a set of M equi-distant (Euclidean
norm on 14 LARs) points on the trajectory. We
refer to this process as spatial sampling. The
distance measure, shown in Fig. 1, is similar to a
metric proposed by Schroeder [3]. Given two
segments with different total durations, Fig. 1, we
resample both segments at M equi-distant points
along their trajectories in the 14 dimensfional LAR

space. The distance measure between the two
segments is defined as:
dlx,y) = ;ﬁ1 witlgg - 1112 (2)

where X,, ¥y are vectors of 14 LARs corresponding
to the ith spatial samples of the two segments x
and y, and Wy is a weight. This distance measure
defines a time warping that is increasingly similar
to a dynamic programming time warping as the
similarity of the two segments increases. Yet,
this measure 1s much more efficient
computationally.

For each spatial (in LAR space) sample of a
segment, we can associate a time of occurrence,
f.e., the time when the input speech is at this
point along the trajectory. We call this
information the detailed timing. We define the
duration of a spatial sample as the average of the
two time intervals: the interval from the previous
sample and the interval to the following one. We
have found that a weight, Wio proportional to the
duration of a spatial sample in the distance
measure improves the quantization process slightly.

To Jjustify the above distance measure we
performed the following experiment. Using the
automatic segmentation algorithm at 11 segments/s,
the detailed timing of each segment was modified
while {ts total duration was preserved. The
detailed timing was changed such that the time
interval between consecutive spatial samples of the
same segment (using M=10 samples per segment) are
equal while the total duration of that segment {s
preserved. The resulting unquantized LPC
trajectory 1is resynthesized. The output speech {s
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generally indistinguishable from the untransformed
asynthesized LPC. But one or two places in a 5-
second sentence will have a slight problem.
However, this degradation will be negligible
compared to the expected degradation when the LPC
parameters are quantized to 200 b/s. Hence, the
detailed timing should not be used to separate two
segments that have the same spectral trajectory.

3. YQCODER DESCRIPTION

We describe in this section the basic two
vocoders we have evaluated, the template selection
process and the quantization methods for
transmitting the side information, e.g., gain,
pitch, ete..

Ioput Sesmentation

1. Separate segmentation and quantization: The
sequence of LPC frames of analyzed input
speech is automatically segmented at an
average rate of 11 segments/s. Each segment
is then quantized to the nearest segment
tem %ace using the distance measure described
earlier.

2. Joint segmentation and quantization: In this
approach the input 1is not automatically
segmented, Instead, all possible
segmentations of the input with an average
rate of 11 segments/s are considered. Then
each segment is quantized using the proposed
distance measure to the nearest template. The
segmentation (with the corresponding quantized
templates) that results in the smallest

uantization error is chosen for transmission.
dynamic programmin search was actuallz

implemented to obtain the optimal join

segmentation and quantization of the input.

Iemplate Selection

The set of segment templates is obtained by
automatically segmenting (11 seg/s) a large
training database of continuous speech. Each
segment is a 140 dimensional vector (14 LARs x 10
spatial samples). Usually, a clustering algoritham
is used to obtain an optimal set of segment
templates. For the large dimensionality (140) of
the segment vocoder, the expected quantization
error of a properly chosen random quantizer is
nearly equal to the distortion rate bound.
Therefore, we do not use a computationally
expensive clustering algorithm to determine the
optimal set of templates. Instead, we use a random
quantizer obtained by a random sample of the
population of segments in speech. While this
result is derived for a vector with independent
components, and the corresponding optimal random
quantizer is a scaled random sample [4], we expect
the above random quantizer for the segment
templates to be as effective.

Side Information

To complete the description of the vocoder, we
present the methods adopted to quantize gain,
voicing, pitch and timing. Since the detailed
timing 4is not perceptually important for the
vocoded speech, the detailed timing of the template
is used. The total duration of a segment |is
quantized with 3 bits such that a peak error of 1
frame is allowed and real time is preserved as
closely as possible (the sum of all transmitted

durations equals the sum of the durations of the
segments of the input speech).

Voicing information is not transmitted. The
sequence of voicing decisions is determined from
the segment template. Pitch s transmitted once
per segment using an adaptive quantizer for the
increment in pitch from the previous segment. The
increment is obtained by the best linear fit for
the pitch track. The adaptive quantizer uses 3
bits and increases the size of the nonuniforam steps
as an increasing function of the segment duration.
The gain track of the template is wused at the
receiver. The gain track of the templates was
normalized to compensate for changes in the
loudness level, This normalization reduced the
gain quantization error. However, a 2-bit
adjustment to the gain track is transmitted to
equalize the means (in dB) of the input segment and
the nearest template. We found that a gain
normalization of the gain track of the templates
improved gain quantization. The normalization was
done by compensating for the changes in the overall
loudness level of the speech used for the
templates. At the receiver, the parameters were
smoothed at the junction of consecutive segments.
The bit rate for all the side information was 88
b/s. In Table 1, we summarize the bit allocation
used in quantizing the different parameters.

Bit Allocation
Spectral Segment 13 bits
Gain Adjustment 2
Pitech 3
Duration 3

21 bits/segment

Bit Rate = 21 x 11 seg/s = 231 b/s
Table 1: Bit Allocation

4. EXPERIMENTAL RESULTS

The database used in evaluating the segment
vocoder consisted of 15 minutes of continuous
speech from a single male speaker reading a
textbook. This data was automatically segmented at
an average rate of 11/s. The resulting 9000 (~13
bits) segments were used as the segment templates
of the random quantizer. Another set of 5
sentences from the same speaker was vocoded to
determine the intelligibility and quality of the
vocoder. Each sentence was six seconds long.

The first set of experiments compared the
following 3 systems:

1. Lgng:q Sggngn%;;igni Both the database
or the templates and the input were segmented

into fixed length segments of 9 frames (or 11
frames/s). This vocoder does not transmit
duration,

2. Yariable S.ﬁnnnum‘ The automatic
sesnentation algor hm was used to segnent
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both the database and the input at an average
rate of 11/s. The segment duration varied
between 4 and 18 frames,

. dgj.ng 'm%pn Quan&j.ng:.gn: The
3 atabase was automatically segmented at an

average rate of 11/s. Dynanmic grogrmins, as
described in Section 3, was used to obtain the
best segmentation and quantization of the
input. However, to reduce the computational
load, we used a binary lookup for segment
quaniization instead of the exhaustive search
used in the first two systems. The binar
lookup was defined by performing an 8-bi
binary clusteri on the 13-bit templates.
Each cluster had an average of 5 bits of
templates. An input segment was quantized to
the nearest cluster (each cluster was
represented by its mean segment), then an
exhaustive search of all the templates in that
cluster was used to determine the nearest
template to the input. .

The side information (gain, pitch, duration
and voicing) was coded in the same manner for all
three vocoders. The bit rate was 200-230 b/s. The
output speech of all three vocoders was quite
intelligibdble. While the second vocoder had a
slightly higher quality (less roughness) than the
first, it occasionally {(once per sentence) missed
one or two phonemes. The reason for missing
phonemes in the second vocoder is that several
phonemes were lumped as one long segment. The
third vocoder is significantly better than the
first two. In fact, it does not suffer from the
problem of lumping phonemes into one long segment.

To determine the degradation in performance
caused by the birary lookup, we used it in the
second vocoder instead of the exhaustive search.
The quantization error using the binary lookup with
13 bits of templates was equal to the quantization
error of an exhaustive search quantizer using 10.5
bits (a loss of 1.5 bits which is quite audible).
Hence, the optimal segmentation of the third
vocoder not only compensates for this loss, but
results in a larger improvement since it is better
than the first two vocoders,

In Fig. 2. wvwe show the input and output
parameters of the second segment vocoder. In this
figure total duration is not quantized to preserve
synchrony. However, the detailed timing of the
template is used for the output. The voicing
decisions and pitch valuea of the output of the
segment vocoder match very well with the input.
The strong dependence of voicing on the spectral
segment is a major benefit of the segment vocoder
approach. Gain is another example of the advantage
of the segment vocoder due to the strong dependence
on the spectral segment. The gain track is well
predicted except for a level adjustment. We also
show the first two log area ratios to illustrate
the detailed match (instead of a piecewise linear
match) that contributes to the smoother quality of
the segment vocoder output.

5. CONCLUSION

We have snown that bdlock quantization can be
used to vocode intelligible speech at 200 b/s.
Automatic segmentation based on spectral
derivatives was demonstrated to be as effective as
diphone segmentation (done by hand). The major
advantages of the segment vocoder are good quality
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FIGURE 2. Unquantized parameters (solid) and
quantized parameters (dotted) for
1 s of speech. The variable length
segmentation is also shown.

output speech (due to naturally occurring
templates) and the efficiency in quantizing the
side information (in particular gain and voicing).
We are currently investigating methods to reduce
the bit rate to 150 b/s with minimal loss in
intelligibility. We are constraining the segment
templates to define a network analogous to the
diphone network. However, instead of |using
phonemes to constrain the diphone templates, as in
the diphone network, a threshold on the spectral
distance from the end of a segment to the beginning
of another determines which segments can follow it.
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A VARIABLE-ORDER MARKOV CHAIN FOR CODING
OF SPEECH SPECTRA

S. Roucos, J. Makhoul, R. Schwartz

Bolt Beranek and Newman Inc.

Cambridge, MA 02238

ABSTRACT

We present a method that reduces the bit rate
of a low rate LPC vocoder by modelling the sequence
of quantized spectra by a Markov chain. To
minimize the bit rate, one would want to use a
high-order chain. Unfortunately, a high-order
chain would require an inordinate amount of data
for training. We describe in this paper the use of
a variable order Markov chain that maximizes the
effective use of a given amount of speech data.

To reduce the number of states of a high-order
chain, we define an equivalence relation on the
states, {.e., “"similar® states are grouped together
in an equivalence class and a single conditional
distribution 1is associated with the equivalence
class. We introduce two equivalence relations. In
the first, called variable order Markov chain, the
equivalence classes represent the most probable
states of any order. In the second method, called
variable resolution, the equivalence class s
obtained by decreasing the quantization accuracy in
representing a spectrum that belongs to a more
remote past. For an LPC vocoder with 6% possible
spectra (using 6-bit vector quantization), the
second method is superior to the first and
decreases the entropy from 6§ bits to 4 bits per
spectrum with 256 equivalence classes.

1. INTRODUCTION

We have recently developed a variadble frame
rate (VFR) LPC vocoder that uses block quantization
(vector quantization) (1] for quantizing the log
area ratios (LARs) of. an LPC spectrua. This
vocoder 1s a8 single speaker system that transmits
the LARs at a rate of 180 b/s: The average frame
rate 1s 30 /s and the LARs are quantized using 6
bits. In order to obtain a vocoder that operates
below 200 b/s, we must reduce the bit rate of the
spectral information to allow us to transmit gain,
pitch, volcing and timing information. We modelled
the output sequence of the VFR algorithm using
several models to achieve more efficient encoding
of the output. The simplest model was a f(irst-
order Markov chain which reduced the bit rate to
128 bd/s for the spectral information (from 6 bits
to .25 bits per transmission). fiigher order
models were expected to further reduce the bit
rate. However, since a limited amount of
"training” data was available, we had to restrict
the type of models that can be esmployed. Ve
present below two general classes of models that

may be used for efficient encoding of the VFR
output sequence. We then present the nmodels we
chose and describe some experimental results.

2. SOURCE MODELS

There are two general classes of models that
have traditionally been used for modelling discrete
information sources. Recently, Rissanen (2]
demonstrated that one class, the recursive models,
is in fact superior to the other, the alphadbet
extension models, He showed that for the same
complexity (measured by the number of probabilities
that specify the model), a recursive wmodel can
always be found that has at least the same entropy
as an alphabet extension model. He also showed
that the converse is not true. We describe below
both models.

Recursive Models

Let s be a string (a finite length sequence)
of symbols from an alphabet S. We assume that the
alphabet S has N symbols (in our case, N spectral
templates). The probability of a string
3=XyXp. . X, of length n is given bdy: .

P(s) = P(xy) P(xyixg).eo Pxpizyxo..ox, q). )

The class of recursive models 1is defined Oy
constraining the conditional p;obnbnittu P(xl|s)
in the following manner. Let S denote the set of
all finite strings over the alphabet S. Suppose
that the set S s partitioned into K equivalence
classes that are defined by a funotion f:

f: $'-2>2 where z = (1,2,...K} (2)

The conditional probabilities of a recursive model
are required to satisfy

P(xis) = P(xif(s)). (3)

In other words, the conditional probadbility of the
symbol x depends only on the equivalence claas of
the string s. This model is specified by K(N-1)
conditional probabilities. The optimal average
code length required for encoding the inforsation
source that corresponds to the above model is given
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by the entropy h:
he- § B3 P(311) log P(§i1) (1)
=g Rudy o8 £

where Pl {s the probadility of the ith equivalence
class and J is the jth symbol of the alphabet and
the base of the logarithm is two.

Usually the conditional probabilities that
specify the recursive model are estimated using an
observed output sequence of the information source.
The maximum likelihood estimate of the conditional
probability is

P11y = B ‘ (s)

where n(j!i) is the number of times symbol j occurs
just after the equivalence class i has occurred,
and n(i) is the nuaber of times the ith equivalence
class occurs in the observed sequence. For a long
sequence, the random variable ni(P(Jli)-P(Jli)) is
asymptotically Gaussian with zero mean and with
variance P(§11)(1-P(J11)) [3]. Hence, the estimate
is asymptotically unbiased and consistent.

Alphabet Extension

Another class of models that can be used to
model the output seq is based on alphabet
extension. In this approach, one defines new
symbols to represent a group (string) of symbols.
Usually the new symbols of the extended alphabet
are used to represent highly probably strings. The
underlying assumption is that the model with the
extended alphabet "captures™ the bdehavior of the
source and hence should decrease the bit rate

sary to de it.

There are two factors that may reduce the bit
rate when alphabet extension is used. Firat, the
addition of new symbols changes the probability
structure. Second, the average duration between
successive symbols increases since the added
symbols represent concatenations of the originsl
symbols. To evaluate the reduction in bit rate, we
compare the bdit rate of a zero memory model of an
information source using either the original
alphabet Sy (N letters represented by the integers
1,2,...N) "or an extended alphabet Sy , (Ne1
letters). We do not assume that the source is zero
aemory but that the model used for coding it is.
Assume that the new symbol Ne1 represents the
string 12 (1 followed by 2). Let p;, p, be the
probabilities of occurrence of 1 and 2 respectively
and let Py be the joint probability of 12 in that
order. The bit rate ry , using Syt 18

e 12(1=P12) (ry+F (P, 1)F(py, P ,)-F(P7,Py5)) (6)

where F(x,y)s(x-y)log(x-y)-xlogx, and r, is the
rate of the model using . It is rolatf‘vcly easy
to show that L could be larger than ry- "ance,
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increasing the model complexity (adding one more
symbol to the alphabet) may increase the bit rate.
This cannot happen with the recursive model. One
can see that the problem with zero memory alphabet
extension is that higher order statistic¢s must be
estimated using a recursive model, which Rissannen
{2] showed can then be substituted by a recursive
model without alphabet extension. We do not pursue
the class of alphabet extension models any further.

3. HKARKOV CHAIN MODELS

Eirat-Order Mariov Chain

To reduce the general recursive model to a
first-order Markov chain, we require each
equivalence class to correspond to one symbol of
the alphabet S of the chain., Therefore, we have N
equivalence classes, where N is the alphabet size.
For a first-order Markov chain, the equivalence
class of a string s is the class represented by the
rightmost symbol of s. The transition probabilities
of this model satisfy:

P(xp,qi8) = P(x; 4ix)) (7

where s=x 1XgeeoXpe Therefore, the probability
distribution of the next syambol x ) depends only
on the current symbol Xny called Ehe state of the
chain. To specify this model, we need to estimate
N(N-1) conditional probabilities.

Yariable Order Markov Chain

The entropy of a Markov chain is monotone
nonincreasing with the order of the chain. But,
the order of the chain one can estimate is sevorely
limited by the amount of training dats required.
For a kth order chain, (N-1)NX  transition
probabilities wmust be estimated. For a second
order chain, with k=2, and N=64 symbols, we need 20
hours of speech (at 30 f/s) to estimate the
transition probabilities (requiring only 10
observations/transition). Since the nuambdber of
states grows exponentially with the order of the
chain, we use equivalence classes on the states to
reduce the number of conditional probabilities one
must estimate.

The equivalence classes are defined such that
each represents a unique state of variable order.
A state of order k is the string of the k moat
recent symbols, {.e., at time n the kth order state
is the string x, .. 1X;_i,2:+-X,- We will use the
words equivalence class and state interchangeadly.
The collection of states (or equivalence classes)
that we are considering can be grouped into a state
tree (Fig. 1). Each node of the tree corresponds
to a state. Each node, except the root node, has a
label which is a symbol from the alphadet of the
information source. The state defined by a node is
the string of aymbols obtained by traversing the
tree from that node to the root node. The root
node corresponds to the equivalence class of all
other states not accounted for by the other nodes
of the tree.
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state tree

FIG. 1. State tree: We show a sequence of
symbols, their state sequence and
the corresponding nodes on the tree.

We present in the next section a method for
generating a state tree and estimating the
corresponding constrained Markov model. However,
we should stress that the state tree representation
does not allow all possibdle state sets. For every
string that s a state, the state tree requires
that all its prefixes are also states of the model.

Yariable Order Model Estimation - The approach
is to sequentially add states to the state tree
until the required number of states has been
reached. The algorithm consists of the following:

1. Initialize the state tree to have one
node only: the null state.

2., Using the training data, estimate the
conditional probability distributions of
all states currently in the tree.

3. Test for highly probable state-symbol
pairs. We used a count of 30 for a
specific state transition pair as a
tareshold (the training data size was an
average of 10 counts/pair). Let s, and

Xnet be such a pair. Create a new state
s'=s x4 obtained by concatenating Xpot
and s,.

4, ¥%hen the number of created states equals
the required number of states, stop
adding states and reestimate the
conditional probabilities using all the
training dats set. Otherwise, go to Step
2.

Ve implemented the above algorithm with two
variations. In Step 2, it 1is not clear how much

training data should be used before going to Step
3. To see the difficulty, we note that the
transition counts' for recently oreated states will
be underestimated as coampared to older states. One
method is to loop through steps 2, 3, and & for
every observed symbol. Another method 1is to
analyze a block of data, then create a set of. new
states, then zero all estimates and go to astep 2
again. The latter method, though computationally
more expensive, results in a model with slightly
lower entropy (by 0.1 bit).

Resolution States - A state of the
variable order Markov model is an equivalence class
used to condition the next symbol. The purpose of
the modelling 1is to find the minimal nuaber of
equivalence classes (or states) needed to condition
speech to get the lowest entropy. One method of
decreasing the number of equivalence classes with
minimal loas in the effectiveness of state
conditioning 13 based on a variable spectral
resolution representation of the classes (states).
The idea 1s that strings that differ only in the
"remote®™ past by small distances should belong to
the same equivalence class. We are assuming that a
distance between the symbols is available. In the
case of the VFR output sequence, a spectral
distance is used. One method to {implement the
above s to use a different codelength (set of
spectral templates) for the symbols in a state
string that depends on the position of the symbol
in the string. The codelength decreases as the
position corresponds to a more distant past. For
example, let 3=x, _,x _,x, be a state string. Then
x, may have 64 poss?ble values (6 bits), x -1 32
values (5 bits) and x, , 16 values (4 vitsf' oa
the state tree, this means that the number of
possible labels of a node depends on the level of
the node in the state tree. This nuamber decreases
as the level of the node increases.

4. EXPERIMENTAL RESOULTS

Initially, ve estimated a first-order Markov
chain for a fixed rate (700 f/s) LPC vocoder that
uses a 6-bit vector quantizer. The entropy
decreased from 5.50 for a zero memory source model,

to 2.25 for a first-order model. We also estimated

a variable order model with 64 states which reduced
the entropy to 2.13, a small improvement over a
first-order chain. However, the bit rate for the
fixed frame rate system is still high (213 b/s for
the spectral information only). To reduce the bit
rate, we used a piecewise linear model for the
trajectory of the LPC vectors (linear in LARs) to
determine the transaission points of a VFR system
{4]. In addition to the reduction {n bit rate, the
VFR vocoder speech is nmuch smoother than that of
the fixed-rate vocoder. A single speaker system
using an average frame rate of 30 f/s and a 6-bit
vector quantizer yields quite intelligible speech.
Using the above vocoder, we analyzed 30 minutes of
continuous spsech from a single male talker. The
output sequence of the VFR algorithm was used to
estimate several recursive models. The variable
resolution models used a 6-bit hierarchical (binary
tree) vector quantigzer to define several quantizers
with decreasing resolution (6,5,4,...bits). Table
1 shows the different models estimated and their
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ist Order
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Entropy 4.25 .39 4.15 3.99 “.88 4.5 6.66
Nusber of
Conditlonting [ 23 (1 128 2156 n b1 2
Classay
Discribution 1 “ &7 62 64 29 25 3]
of State 2 13 33 132 2 .6 11
Order 3 2 10 » o

O H4 1 H

5 6
odel
Complentty 4032 2907 4782 7631 ¢ 1651 1624 1493

Table 1. Parameters of Markov Models.

corresponding entropies. The zero memory entropy
of the VFR vocoder was 5.85 bits. For the variable
order and resolution models, we define the variable
R that specifies the spectral resolution used at
each level of the state tree (position in time
along the state). A value of R=65432 means that a
6-bit quantizer is used at level 1 (time n), a 5=
bit quantizer at level 2 (time un-1), and so on.
For these models, we also shcw the distribution of
the number of states used with a given order (from
1 to §). For the variable order models, the root
node corresponds to a state of order zero (zero
memory state). The complexity of the models
considered, as determined by the number of
transition probabilities estimated, is shown in
Table 1. For the first-order Markov chain, the
worst case complexity 1is shown. For the other
models, the actual number of  conditional
probabilities estimated is indicated. In the case
of the VFR output sequence, the variable order
model with 64 states {s slightly worse than a
tirst-order model. The reason for this difference
is that highly probably states are not as effective
as the set of all first-order states. To improve
the performance of the variable order model, we
tried another method for selecting the states on
the state tree which are be extended. The states
with the largest contribution to the average code
length were extended first. The performance of
these models was similar to those that used the
most probable states for extension.

To illustrate the performance of the variable
resolution model, we considered a model with 32
states. Ve chose different spectral resolutions
for defining the states as showa in columns §
through 7 of Table 1. For this low number of
states (32), we found that decreasing the
resolution to an optimal value (R=53321) has the
lowest entropy of 4.54. We also found that as the
number of states i3 increased, the required optimal
resolution increases. Finally, the entropy is
ponotone decreasing with the nuaber of states, a3
shown in columns 2 through 4. For a model with 256
states, the entropy is reduced from 5.85 to 3.99, a
savings of 1.86 bits.

8. CONCLUSION

In this paper we described the use of
recursive models to reduce the bit rate of the
spectral information to 120 b/s (using 256 states)
in a VPR vocoder. The flexibility of the models

(continuous increase of the number of states)
allows a more efficient use of the available data
than the usual fixed order Markov chains. However,
the selection of the equivalence classes is
arbitrary. One cannot guarantee that the resulting
classes are optimal (minimal entropy). Further
work {s needed to determine a criterion for
selecting which states must be extended.
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VECTOR QUANTIZATION FOR VERY-LOW-RATE
) CODING OF SPEECH

S. ROUCOS, R. SCHWARTZ AND J. MAKHOUL

Bolt Beranek and Newman Inc.
Cambridge, MA 02238

ABSTRACT
We describe in this paper several vector gerrornance to optimal scalar quantization. In
. quantization techniques that can be used to ection &, we introduce a new approach for very-
N transmit speech at a bit rate ranging from 150 b/s low-rate vocoding of speech based on segment
AU to 800 b/s. The methods can be grouped into two quantization.
SN classes: single frame quantization methods and
" segment 2uan ization methods. In single-frame
. quantization methods, all the parameters of the
- vector being quantized represent a single frame of 2.. YECTOR QUANTIZATION
o speech  (typically 20 msec). n  segnent
quantizagion, the tparamegers ott‘ thethvecl:odr e}ng
S uvantized represent speech events on the order of a .
ghone (90 ms). We present three frame quantization d“{i‘ ‘hi‘? ’""’é{’" 1"‘ d::"ibe “‘°t"‘°“’"’
pethods based on clustering algorithms and compare  COfditions for optimal vector quantization. 1In
their performance to optimal scalar quantization. vector quantization we combine several parameters
Then we describe the new segment guantization ii';ﬁn’aniéﬁgi; ”“f':;t:a':’d qtzarntizqe“:l&z :;““::::
method that can be used to transmit i{ntelligible separately. The n-dimensionzl vector 13 used to

speech at 150 b/s. represent a set. of n parameters., An M-level, n-

> dimensional block uantizer is defined by a
¢ partition Pslcé; {=z1,M] of the space of all input
L. INTRODUCTION vectors into regions, each denoted by C,. A

template vector Z8 is also defined for each iesion

C*. The input vector x is quantized by deternining

thie region C; that contains X, and the template Z4

) For narrowband speech compression, the LPC of that region {s used as the quantized value of x.
. vocoder achieves reasonable quality and This block quantizer has been called a vector
[ ] intelligibility at a bit rate of 2400 b/s. In the quantizer, a term which will be used in this pager
LPC vocoder, we quantize the log-area-ratio (LAR) to 1ndica£e that a single-frame quantization method
parameters using a scalar quantization method. 1In is used, i.e,, the vector represents a single frame

. scalar quantization eac LAR is quantized (typically 20'ms) of speech.
. separately. To_ reduce the bit rate of the LPC A nonnegative distortion measure, denoted by
- vocoder, Buzo (1] proposed to use vector -d(X,Zz), 13 used as an objective measure of the loss
- quarntization for quantizing the LPC spectrum. In in accuracy in representing an input vector x by a

this method, all the linear prediction coefficients template z. An optimal vector quantizer quantizes
that represent an input speech spectrum are an 4input vector  using . the minimum distance bR

considered as a vector and gumtized as a single classification rule: e

. unit. Using vector quantization one can reduce the . -

e biturtate rf.omeoo b/: dwitth n:13u111 decrease in the s, |

Co- ua [) e vocoded s . . S
g Hz describe in thlsspa r several methods for X € Oy C==> d(x,29) < d("zJ)' 1<3cH S

vector quantization and evaluate their performance
. for the very-low-rate transmission of speech., We The templates of the optimal vector quantiz. - must

consider the range from 100 b/s to 800 b/s. The be the ¢
vfcr«r quantizers that we describe fall in two Cys 1..,',’“2,‘,: 22,3}:?:{1'22.‘.{.‘{:2‘,'“”““"‘ ! ton ST
clas es: -5y
9

i 1. Single frame Quentization: In these f
e ne:gods. the parameter vector that is c d(x,z)p(x)dx, (2) %
L - quantized represents the spectrum of a i
sins%; t;riane oé‘h :pnhch. b‘l'hese :ogtor A
dantization methods have bdeen used from
where p(x) is the probability density function of
300 b/s to 800 b/s. assg?:g to exiir.piu 1}‘ho ’ago\%e L{fodopu:aut§ T
- . con ons were initia use oyd to design
L 2. g:ﬁ:;:g.g“:::é::‘,i.:g,:.“{,"t,tzi:.:::;aetg? optimal one-dimensional ’(scllar)y quanyuzers. gn e
speech spectra. Typically, a segment of pattern recognition, Macqueen (2) derived the K- w
.ﬁ: input s°peec‘ with' a ?\nxntion means clustering algorit using the above two —
—~ comparable to that of a phoneme is ort.‘.mnty conditions. Buzo (1) used the K-means Coed
quantized as g single unit. We have used gtugggrwg algoritha for an LPC vocoder operating .

this novel method of segnent quantization

- for vocoding speech from 150 b/s to 250 al or{'t‘hnr'sh.ro&ﬂg::icgn 3‘:’“&'&:‘ present several
© Quantizer
b/s (single speaker vccodcr?. cl&scer:.ng toohniques. 3 q er using

: In Section 2, we define vector quantization.
P In Section 3, we describe several vector quantizers
for single (rame quantization and compare their
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3. SINGLE-FRAME QUANTIZATION

In this section, we describe three methods for
vector quantization that have been used for coding
the LPC spectrum of an input speech frame, Al
three methods use a clustering algorithm on a
training set of 1ngut vectors for designing the
vector quantizer. The clustering algorithns differ
in the amount of training data needed, the
computational and memory requirements, and the
resulting quantization error. The three methods
are

o FK-geans clustering
o Binary clustering

o Cascaded clustering

wWe evaluate the performance of the above algorithums
and compare it with optimal scalar quantization.
We then discuss their usefulness for very-low-rate
coding of speech.

The K-peans algorithm has been used
extensively {n pattern recognition. Usin% a
training set of observed vectors representing
speech spectra, the K-means algorithm 1s a hill-
chnbing algorithm that determines a set of K
templates that minimize the cluatering criterion.
The clustering criterion is the average

uantization error. In our case, we need to find

= M templates. It is based on the optimality
conditions described is Section 2. Below, k 13 the
{teration index and z¢(k) is the estimate of the
template of cluster Cy at iteration k. The steps of
the algoritha are:

. talization: Set k:0. Choose by sonme
2 ggégua:e method a set of M dinitial
spectral templates z¢(1) for 1igM.

. sification: k<{=-=kel, Classify all

2 gg:stratnlng data x to_the corresponding

nearest teamplate. This defines the
clusters Cy(k):

X€Cy (k) 17 d(x,21(k))LA(x,24(k)) (3)

19<M

. Template Updating: Update the template of

3 evegy clugter gging all model spectra

assigned to that cluster in Step 2.  For

cluaéer i, the new template z{(k'1) is

the vector z that minimizes theé cluster
average distance given by

D(Cy(k)) = mrixy x%;(k) d4(x,2) (%)

4, ination Test: If the templates
;:r:¢1) are significantly different from
21(k), 8o to Step 2; otherwise, stop.

Duda and Hart (3] present several methods for
obtaining an initial set of templates. The above
algoritha can be shown to converge. However, the
K-geans algorithm may converge to a local optimum.
A classicn? solution to get global optimalily has
been to use different sets of initial templates
(Step 1), snd then to choose the best final result,

There are two reasons to Ruatify the use of s
vector quantizer {nstead o a simple scalar
quantizer:

1. Using the same distortion measure, an

optimal vector quantizer has a smaller
distortion than an optimal scalar
quantizer for the same bit rate. This
advantage increases as the statistical
dependence of the parameters increases.
However, as we show later, for the mean-
square error distortion measure, only the
statistical dependence that is different
{rom correlation will contribute to a
difference Dbetween vector and scalar
quantization.

2. The second advantage of vector
uantization is the ability to use vector
istortion geasures that cannot Dbe

minimized by a scalar qQuantizer such as
the Itakura distortion measure. However,
the usefulness of such a vector measure
must be Justified, In particular, wve
have found no difference between the
Itakura distance neasure and the simple
Euclidean distance on LARs when compared
using 10-bit vector quantizers. The
vocoded speech using the two Quantizers
were informally compared and resulted in
similar qualit{. Therefore, we will use
the simple Euclidean distance on LARs in
the remainder of this paper.

To determine the gain of vector quantization
over scalar quantization due to statistical
dependence, we performed several experiments that
we describe below. We initially define optimal
scalar quantization,

Optizal Scalar Quantization

We first describe the optimal scalar
quantization process for a Gaussian random vector
of parameters. Then we compare the nean-square
error of the K-peans algorithm and the optimal
acalag quantizer {n quantizing LPC parameters of
speech.

Given a set of n parameters represented by a
random vector X, and a fixed number of bits b, the
optimal scalar quantizer that minimizes the mean-
square error consists of three steps:

1. Parameter decorrelation
2. Bit allocation
3. Scalar quantizatiorm.

We describe each of these steps bdelow.

ter decorrelation: Let Q be the matrix whose
columns are the eigenvectors of the covariance
matrix C of the Gaussian random vector X. The new
parameter vector y =z Q'X will have uncorrelated
components.

Bit al;gg;t}gn; The second step is to allocate the
iven its among the components of y. Segall [4]
erived the optimal bit allocation or the

Euclidean distance measure.

5:3%;; Quantization: The third and final step is to
perform the scalar quantization of each cooponent
Ki using by bits as allocated {n the prev}ous Step.
ere one Simply uses a Max quantizer (5] designed
for each comporent.

In the application of optimal scalar
quantization to LAR quantization, one estimates the
covariance C and the corresponding transfornation
patrix Q from a set of training speech sanples.

We compared the performance of optimal scalar
quantization ar:. vector guantization for randoaly
generated vectc 's with a Gaussian distridution. We
used a training sequence of 15,000 vectors to
compare the perlorgance of both quantizers from 1
to 10 bits with the dipensionality varying from 10
to 14, The covariance matrix was chosen to be the
same as that of the LAR vectors of speech spectra.
The performance of both quantizers as nmeasured by
the mean-square error and the entropy of the
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B rouping the deviations from all the clusters
tggestherp. swe are fimplicitl asasuming that all
clusters of the first stage have the same
deviations (same statistics or shape), and that we
car model the statistics of each cluster by the
average over all clusters. Since this is enerally
not true, cascaded clusterin is suboptimal.
Basically, by combining the deviations we are
reducin the statistical dependence ain. To
parttal?y improve the per{ormance o cascaded
clustering, we increased the similarity of the
clusters by using a principal component
decomposition of the deviations before comdinin

theno. We represented the deviations of eac

cluster along the principal components of the
corresponding cluster. Then we grouped all
deviations. This corresponds to rotating the
clusters soithatithe%; principal components align
before superimposin, en.

We p:onpgggd € several cascaded clusterin
algorithms on speech data represented by A
vectors, using the Euclidean distance. Fig.
shows Lhe mean square error of the different
algorithms versus the bit rate. The 1-bit stage
curve corresponds to the performance of cascaded
clustering using several stages where each stage
corresponds to 1-bit clultering. After 5 stages
(or S bits) the error decreases at a rate o
dB8/average bit, which would be obtained with
optimal scalar quantization, Therefore, the
sgltisticnl dependence is reduced b merging
deviations, The performance of 1-bit stage
cascaded clustering can be improved by using an
eigenvector rotation on the cluster as ex lained
above, The gain due to the rotation is bits.
Using a 4-bit stage instead of 1 bit with rotation
improves performance, However, at the third 4-bit
stage (or at bits of cascaded clustering) the
slope recaches the 6 dB limit of  scalar
quantization. Hence, one should use the largest
bit allocation to the first stage. We also have
found that il we use 10 bits for the first stage,
the performance of the second stlft is equivalent
to optimal scalar quantization, n that case, an
optimal scalar quantizer may be used for the second
sga e instead of clustcring. As we reported (n
Sccgion 3, & osscaded clustering vector quantizer
(10 bit vector quantizer for the first atage with a

20 bit scalar quantizer for the second stage) has
the same performanrce as our optimal 30 bit scalar.
Therefore, at higher bit rates an optimal scalar
quantizer would be preferred to cascaded
clustering.

The binary clustering vector guantizer has
been the most effective single frage quantization
nethod for vocoding speech from 300 b/s to 800 bd/s.
Typically, 10 bits per transmission have been used
for the spectrum. By var{ing the number of
transmissions per second and the bit rate of pitch
gain, and voicing, we can vary the vocoder b1£
rate. At 400 b/s the quality of the vocoded
original {s very close to 2400 b/s in a single
speaker system. In the next section, we describe a
new approsch called segment quantization that can
be used for transamitting speech at 150 b/s.

4., SEGMENT QUANTIZATION

We presented in Section 3 several vector
quantizers based on clustering techniques. In this
section, we discuss a new vector quantizer that
does not use clustering. Instead, the set of
templates 1s obtained by a random sanplin%
technique. Before discussing the performance o
such a vector quantizer, we describe the structure
of the segment vocoder [8] that wuses random
quantization for transmitting speech using a bit
rate from 150 b/s to 250 b/s.

The gain of vector quantization over scalar
quantization {ncreases as the amount of the
statistical dependence of a set of parameters
increases, Since we expect consecutive speech
spectra to be highly dependent, a vector quantizer
that quantizes a sequence of sSpectra as a unit
would be most effective. In segnent quantization
we use a segment which consists of a variabdle
number of consecutive frames as the unit for
quantization. Below, we present the segmentation

~algoritha used to define the segments, the distance

measure between two segments, the segment template
selection process and a brief description of the
segment vocoder. .

Segmentation

Our work on the phonetic vocoder [9] provides
a basis for selecting what events in speech must be
combined into one segment, in he phonetic
vocoder, we model speech by a diphone network. A
diphone 1is represented by a sequence of LPC spectra
from the middle of a phoneme to the middle of the
following phonene. However, hand labeling of
speech 1is necessary to obtain the diphone
templates, rcquiring a large human effort. To
avoid this effort, we gro 0oSe to use an automatic
segmentation algorithm to define the segments.

One can use anz of several segmentation
algorithms to define the variable length segments.
We used a simple algorithm that considers speech as
a succession of steady states separated by
transitions. Two spectral time-derivatives were
thresholded to determine the middle of transitions.
The derivatives are:

dg(n) = 11x(n) - x(n=1)112 , 121,3 (s)
wvhere x(n) 1s a vector of 14 LARS representing the

nth frame., dy detects fast_ transitions while d
detects slover transitions, The steady states vera

deternined at the peints of ainimum dy within a
window between two transitions. The segments were
defined to begin and end {n the middle of

consccutive steady-states. We decided to use an
average segment rate of 11/s (equal to expected
phonene rate). The resulting segmentation of the
automatic algorithm has been found to be generally
similar to the correct diphona segmentation.

Distance Measure

In defining the distance neasure betwveen two
sexments, we have to 3specify the time alignment of
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quantizer output was almost identical (both within
3%). Therefore, for a low dimensionality (~15) one
should simply use the optimal scalar quantization
process for a Gaussian random vector.

Statistical Dependence

The wmajor Juatification for using vector
guantization instead of scalar quantization for
speech compression has been based on the expected
superior performance due to the statistical
dependence of speech spectral parameters. We have
seen that parameter carrelation does not contribute
to a difference in performance between vector and
optimal scalar quantization. Hence, we have to
determine 4{f speech exhibits any statistical
dependence other than correlation to Justify the
use of vector quantization. To estimate the
savings {n bit rate due to statistical dependence
we compared a vector quantizer with an optima
scalar quantizer for a data base of speech spectra
represented by 14 LARs, The Euclidean distance was
used to measure the quantization error. Fig.'I
shows the mean-square error of both quantizers. We
also show in Fig. 1 the bit allocation used for the
optimal scalar quantization. For each additional
bYt we show the ecigenvector that gets this
adéltional bit and the cumulative sum of bits
allocated to that conmponent. We found that the
vector quantizer was better than the scalar
quantizer. The mean-aquare error of the 10-bit
vector quantizer was equal to that of the 15-bit
optizal scalar, a saving of S5 bits,

RO RPN T

The advantage of vector quantization over
optimal scalar quantization (a gainm of 5 bits for
tge same mean-square error) is most significant for
very-low-rate vocoding of speech, Practical
limitations on the amount of computing and trainin
data limits optimal vector quantizers to about 1
to 12 bits. For higher bit rates, suboptimal
vector quantizers suc as cascaded clustering,
which is described belov may be used. However, the
resulting loss in optimality reduces the advantage
of vector quantization over optimal scalar. When
we compared the two methods (cascaded and scalar)
at 30 bits, we found vector quantization to be less
robust than optimal scalar which resulted in the
same performance for both methods., Therefore, at
these higher bit rates, a scalar quantization
method would be most effective,

Recent published results [6) using the
Itakura-Saito distance claim an advantage of 14
bits for vector quantization! This larger gain may
be explained by two factors:

1. The scaslar quantizer wused for the
comparison was the minimum deviation
quantizer (7). This uvantizer s
suboptizal for the Itakura-Saito distance
used for vector quantization. This
distance measure {s not separadle into
components so that a scalar quantizer can

be designed to get the @minimum
distortion.
2. The parameters used for scalar

quantization weres not decorrelated. Ve

FOME T S

have determined that the eigenvector
rotation of the LARS saved 3 bits,

Bipary Clustering

The K-means clustering algoritha has an
extensive computational load for both the training
(cluater1n§ phase) and the quantization phase. The
extensive load {s due to the exhaustive search that
requires M (for M templates) distance calculations
to determine the nearest template. A Dbinary
clustering procedure reduces the number of distance
calculations to 2logsM by imposing hierarchical
structure on the ¢ %sters. This procedure (s
equivalent to defining a tree structure whose nodes
correspond to clusters,

.Tne binary clustering is applied sequentially
in the following manner on a tralninf data set,
Initially, the binary clustering algorithm divides
the training data set of model spectra into two
clusters using the K-means algorithm with K=2,
Then each cluster is further subdivided {(nto two
clusters until the desired number of clusters {s
obtained. The K-means algorithm (where K=2) is
always used in dividing a given cluster.

There are two issues of the binary clustering
technique that we consider in more detail: (1) how
to choose which clusters to subdivide next, and (2)
how the quantization error of a binary quantizer
compares with that of an optimal quantizer,

There are several methods for selecting which
cluster to subdivide next. The uniform tree method
divides all clusters at a given level 4n the tree.
Therefore, the resultin inary tree {s unifora.
Another method is to select that cluster that has
the largest contribution to the quantization error.
This method results i{n a nonuniform tree.

Uain% the gmean-square error (on LARS), we
compared the uniform binary clustering, nonuniform
binar¥ clustering, and the K-means clusteriné. The
nonunifora binary clusteri required 0.5 bits less
than the uniforz binary clustering for the sane
quantization error. Further, the nonuniform binary
clustering required 0.5 bits more than the K-means
algoritha for the same MSE.

The @inimal loss in performance of the
nonuniform binary clustering can be tolerated 1in
most applicatiocns given the tremendous savings in
computation (only <ZlogpM distances on the average
instead of M).

Laacaded Cluatering

The above clustering algorithas (K-means and
binary clustering) require an amount of training
data that grows exponentially with the bit rate.
For example, one hour of speech data is sufficient
for no more than 11 to 12 bits of clustering. The
above algorithm can be described as a one-stage
a%sorithm: an 4input vector is quantized in one
step.

To reduce the amount of training data required
(in fact, we also reduce the computational load),
we can use cascaded elus»ering. The idea {s to
perform the clustering in two stages. In{tially, a
clustering (usin either K-means or binary
clustering) is perlormed using r bits. We refer to
this stage as an r-bdit stage. Then, the deviation
from the nearest template (quan&izatlon error
vector) for all the data in the training set are
computed, The data set of deviations is used to
cerforms a second stage of clusterini of t bits (t-
sit stage). The two sets of templates are used as
a vector quantizer in the following cascaded
manner, First, the nearest template to an {nput
vector from the r-bdbit stage is cetermined. Then,
the deviation (or quantization error vector) {is
q:ancized using the templates from the second t-bit
stage.

The bit rate og cascaded clustering 43 ret
bits, yet only 2F.2 g&ts tenplates have to bde
eatimated instead of 2%*T., Therefore, both the
apount of training data and the number of distance
calculations {n "quantization are ségnirieantl
Ssggged (both are proportional to 2T+2F instead o
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he variable length segments. The distance measure
:ee propose defines implicitly the required time
uarplgﬁ; sequence of LPC spectra in a segment
represents a pieceuise linear traJector{hin the 14

dimensional LaR space. The total length (using a
Etclldean norm on LARs) of a aefnent {s coamputed
and s used to define an "equi-apaced"” sampled
representation of the aeq?ent. {.e., the segment {s
resampled at a set of equi-diatant {using the
Euclidean norm on 14 LARsS) points on the
trajectory. We refer to this process as spatial
sampling. The distance measure is similar to a
cetric proposed by Schroeder {10]. Given two
segments uigh different total durations we resample
both segments at M equi-distant points along their
trajectories 4in the 14 dimensional LAR space.
Then, the distance measure between the two segments
i{s defined as:

M
alxoy) = ) vellxg - yyll2 (6)
are vectors of 14 LARs corresponding

:ge:;‘x Eﬁ!%pacial samples of the two segments x
and y, and wy 1s a weight, This distance measure
is more efficlent than a distance measure that uses

a dynamic programming time warping.

Temn) 3

The set of segment templates of the segment
vocoder i3 obtained by automatically segmenting 11
seg/s) a large training database of continuous
speech, ¥We consider this set of templates a: a
randocly selected set and call {t a random

uantizer., We ¢o not use a clustering algorithm to
eternine the set of teamplates for the segment
quantizer because of the excessive amount of
training data required and computatio.al load.
However, we expect the performance of the two
methods to be similar because of the large
c¢imensionality of the vector representing a segment
(140 dizensions). In fact, for a Gaussian vector
with independent identically distributed
cozponents, one can show that a set of N templates
obtained by a random sample of N vectors, has an
expected mean~-square error e?ual to the optimal
éistortion rate function [11] and therefore {s
opt..giace segments do not have independent
GCaussian coamponents, we determined the loss (n
optizality when a random quantizer is used instead
of a segment quantizer based on binary clustering
of segpments. We found that the cluster base

quantizer requires 2 bits less than the random
quantizer for the same mean-square error, a sgall
savings compared to the cooplexity of segnment
clustering. Further, we found that for the same
dit rate, the random quantizer results in a better
subjective speech quality than clustering despite a
larger quantization error. We believe that the
averaging process used to determine a template in
clustering smears the detailed trajectories of the
segments which results {n a more oulfled speech.

Yocoder Description

We describe in this section the basic segment
vocoders. The sequence of LPC frames of analyzed
input speech i3 automatically segmented at an
average rate of 11 segments/s. Each segment {s
then quantized to the nearest segment emplate
using the distance measure deacribed earlier,

To complete the description of the segment
vocoder, we present the methods adopted to quantize

afin, voicing, pitch and timing. These¢ methods are
Eescrtbed in detail in ([8]). he total duration of
a segment {s quantized and transmitted. Voicin

information {s not transmitted. The sequence o

volcing decisfons is determined from the wuegment
teaplate. Pitch s transmitled once per segment
using an adaptive quantizer that uscs the best

linear fit of the pitch track. The gain track of
the template {3 used at the receiver, However, a
2-b4t evel adjustment to the ain track (s
transmitted to equalize the means {in dB) of the

input segment and the nearest template. At the
recelver, the parazeters were smoothed at the
Junction of consecutive segments. The segment
vocoder can :~ansmit intelligible speech at 220 b/s
for a single speaker, Usinf a segment network we
can reduce the bit rate to 150 b/s with a minizmal
loss in quality [12].

5. CONCLUSION

Vector quantization techniques are useful for
vocoding speech at bit rates varying from 150 b/s
to 800 b/s. For higher bit rates, a Simple optimal
sQalar quantizer is greferred. For the lower rates
from 150 b/s to 250 b/s, a segment vector quantizer
based on random quantization was demonstrated to be
effective for the transmission of speech.
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